|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import sys\n", |
| 10 | + "sys.path.append('..')\n", |
| 11 | + "\n", |
| 12 | + "import pandas as pd\n", |
| 13 | + "import numpy as np\n", |
| 14 | + "from onehot import OneHotDummy" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "## Load Data" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 2, |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [], |
| 29 | + "source": [ |
| 30 | + "df = pd.read_csv(\"../data/train.csv\")\n", |
| 31 | + "#df.describe()" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "## Check it" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 3, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [ |
| 46 | + { |
| 47 | + "data": { |
| 48 | + "text/plain": [ |
| 49 | + "OneHotDummy(droprule=None, mapping={0: 0, 1: 1, 2: 2, 3: 3}, nametyp=None,\n", |
| 50 | + " nastate=False, prefix='BsmtFullBath', sep='_', sparse=False)" |
| 51 | + ] |
| 52 | + }, |
| 53 | + "execution_count": 3, |
| 54 | + "metadata": {}, |
| 55 | + "output_type": "execute_result" |
| 56 | + } |
| 57 | + ], |
| 58 | + "source": [ |
| 59 | + "s = 'BsmtFullBath'\n", |
| 60 | + "obj = OneHotDummy(sparse=False, prefix=s)\n", |
| 61 | + "obj.fit(df[s])" |
| 62 | + ] |
| 63 | + }, |
| 64 | + { |
| 65 | + "cell_type": "code", |
| 66 | + "execution_count": 4, |
| 67 | + "metadata": {}, |
| 68 | + "outputs": [ |
| 69 | + { |
| 70 | + "data": { |
| 71 | + "text/plain": [ |
| 72 | + "count 1460.000000\n", |
| 73 | + "mean 0.425342\n", |
| 74 | + "std 0.518911\n", |
| 75 | + "min 0.000000\n", |
| 76 | + "25% 0.000000\n", |
| 77 | + "50% 0.000000\n", |
| 78 | + "75% 1.000000\n", |
| 79 | + "max 3.000000\n", |
| 80 | + "Name: BsmtFullBath, dtype: float64" |
| 81 | + ] |
| 82 | + }, |
| 83 | + "execution_count": 4, |
| 84 | + "metadata": {}, |
| 85 | + "output_type": "execute_result" |
| 86 | + } |
| 87 | + ], |
| 88 | + "source": [ |
| 89 | + "#print(df[s].head())\n", |
| 90 | + "df[s].describe()" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "markdown", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "## Check 2" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "code", |
| 102 | + "execution_count": 5, |
| 103 | + "metadata": {}, |
| 104 | + "outputs": [], |
| 105 | + "source": [ |
| 106 | + "transformer = dict()\n", |
| 107 | + "\n", |
| 108 | + "cols = [\n", |
| 109 | + " 'MSZoning', 'Street', 'Alley', 'LotShape', 'LandContour', 'Utilities', \n", |
| 110 | + " 'LotConfig', 'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', \n", |
| 111 | + " 'BldgType', 'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', \n", |
| 112 | + " 'Exterior2nd', 'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', \n", |
| 113 | + " 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', \n", |
| 114 | + " 'Heating', 'HeatingQC', 'CentralAir', 'Electrical', 'KitchenQual', \n", |
| 115 | + " 'Functional', 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', \n", |
| 116 | + " 'GarageCond', 'PavedDrive', 'PoolQC', 'Fence', 'MiscFeature', 'SaleType', \n", |
| 117 | + " 'SaleCondition', 'MSSubClass', 'MoSold',\n", |
| 118 | + " 'OverallQual', 'OverallCond', \n", |
| 119 | + " 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', \n", |
| 120 | + " 'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageCars']\n", |
| 121 | + "\n", |
| 122 | + "for i, s in enumerate(cols):\n", |
| 123 | + " obj = OneHotDummy(sparse=False, prefix=s)\n", |
| 124 | + " obj.fit(df[s])\n", |
| 125 | + " transformer[s] = obj" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "metadata": {}, |
| 131 | + "source": [ |
| 132 | + "## Check 3" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 6, |
| 138 | + "metadata": {}, |
| 139 | + "outputs": [], |
| 140 | + "source": [ |
| 141 | + "from grouplabelencode import grouplabelencode\n", |
| 142 | + "s = 'GarageCars'\n", |
| 143 | + "mapping = [1,2,3,4]\n", |
| 144 | + "encoded = grouplabelencode(df[s], mapping)" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": 11, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [ |
| 152 | + { |
| 153 | + "data": { |
| 154 | + "text/plain": [ |
| 155 | + "array([1, 2, 0, None, 3], dtype=object)" |
| 156 | + ] |
| 157 | + }, |
| 158 | + "execution_count": 11, |
| 159 | + "metadata": {}, |
| 160 | + "output_type": "execute_result" |
| 161 | + } |
| 162 | + ], |
| 163 | + "source": [ |
| 164 | + "pd.unique(encoded)" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "cell_type": "markdown", |
| 169 | + "metadata": {}, |
| 170 | + "source": [ |
| 171 | + "looks good now" |
| 172 | + ] |
| 173 | + } |
| 174 | + ], |
| 175 | + "metadata": { |
| 176 | + "kernelspec": { |
| 177 | + "display_name": "Python 3", |
| 178 | + "language": "python", |
| 179 | + "name": "python3" |
| 180 | + }, |
| 181 | + "language_info": { |
| 182 | + "codemirror_mode": { |
| 183 | + "name": "ipython", |
| 184 | + "version": 3 |
| 185 | + }, |
| 186 | + "file_extension": ".py", |
| 187 | + "mimetype": "text/x-python", |
| 188 | + "name": "python", |
| 189 | + "nbconvert_exporter": "python", |
| 190 | + "pygments_lexer": "ipython3", |
| 191 | + "version": "3.6.2" |
| 192 | + } |
| 193 | + }, |
| 194 | + "nbformat": 4, |
| 195 | + "nbformat_minor": 2 |
| 196 | +} |
0 commit comments