-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcgan.py
240 lines (174 loc) · 7.12 KB
/
cgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import os
import argparse
import torch
from torch.autograd import Variable
import torchvision.transforms as transforms
import random
from torch.utils.data import DataLoader
from torchvision import datasets
import torch.nn as nn
import torch.nn.functional as F
import torchvision.utils as vutils
parser = argparse.ArgumentParser()
#parser.add_argument('--dataset', required=True, help='cifar10 | lsun | mnist')
parser.add_argument('--dataroot', required=True, help='path to data')
parser.add_argument('--batchSize', type=int, default=64, help='input batch size')
parser.add_argument('--imageSize', type=int, default=32, help='image size input')
parser.add_argument('--channels', type=int, default=1, help='number of channels')
parser.add_argument('--latentdim', type=int, default=100, help='size of latent vector')
parser.add_argument('--n_classes', type=int, default=10, help='number of classes in data set')
parser.add_argument('--epoch', type=int, default=200, help='number of epoch')
parser.add_argument('--lrate', type=float, default=0.0002, help='learning rate')
parser.add_argument('--beta', type=float, default=0.5, help='beta for adam optimizer')
parser.add_argument('--beta1', type=float, default=0.999, help='beta1 for adam optimizer')
parser.add_argument('--output', default='.', help='folder to output images and model checkpoints')
parser.add_argument('--randomseed', type=int, help='seed')
opt = parser.parse_args()
img_shape = (opt.channels, opt.imageSize, opt.imageSize)
cuda = True if torch.cuda.is_available() else False
os.makedirs(opt.output, exist_ok=True)
if opt.randomseed is None:
opt.randomseed = random.randint(1,10000)
random.seed(opt.randomseed)
torch.manual_seed(opt.randomseed)
# preprocessing for mnist, lsun, cifar10
if opt.dataset == 'mnist':
dataset = datasets.MNIST(root = opt.dataroot, train=True,download=True,
transform=transforms.Compose([transforms.Resize(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))]))
elif opt.dataset == 'lsun':
dataset = datasets.LSUN(root = opt.dataroot, train=True,download=True,
transform=transforms.Compose([transforms.Resize(opt.imageSize),
transforms.CenterCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))]))
elif opt.dataset == 'cifar10':
dataset = datasets.CIFAR10(root = opt.dataroot, train=True,download=True,
transform=transforms.Compose([transforms.Resize(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]))
assert dataset
dataloader = torch.utils.data.DataLoader(dataset, batch_size = opt.batchSize, shuffle=True)
# building generator
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.label_embed = nn.Embedding(opt.n_classes, opt.n_classes)
self.depth=128
def init(input, output, normalize=True):
layers = [nn.Linear(input, output)]
if normalize:
layers.append(nn.BatchNorm1d(output, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.generator = nn.Sequential(
*init(opt.latentdim+opt.n_classes, self.depth),
*init(self.depth, self.depth*2),
*init(self.depth*2, self.depth*4),
*init(self.depth*4, self.depth*8),
nn.Linear(self.depth * 8, int(np.prod(img_shape))),
nn.Tanh()
)
# torchcat needs to combine tensors
def forward(self, noise, labels):
gen_input = torch.cat((self.label_embed(labels), noise), -1)
img = self.generator(gen_input)
img = img.view(img.size(0), *img_shape)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.label_embed1 = nn.Embedding(opt.n_classes, opt.n_classes)
self.dropout = 0.4
self.depth = 512
def init(input, output, normalize=True):
layers = [nn.Linear(input, output)]
if normalize:
layers.append(nn.Dropout(self.dropout))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.discriminator = nn.Sequential(
*init(opt.n_classes+int(np.prod(img_shape)), self.depth, normalize=False),
*init(self.depth, self.depth),
*init(self.depth, self.depth),
nn.Linear(self.depth, 1),
nn.Sigmoid()
)
def forward(self, img, labels):
imgs = img.view(img.size(0),-1)
inpu = torch.cat((imgs, self.label_embed1(labels)), -1)
validity = self.discriminator(inpu)
return validity
# weight initialization
def init_weights(m):
if type(m)==nn.Linear:
torch.nn.init.xavier_uniform(m.weight)
m.bias.data.fill_(0.01)
# Building generator
generator = Generator()
gen_optimizer = torch.optim.Adam(generator.parameters(), lr=opt.lrate, betas=(opt.beta, opt.beta1))
# Building discriminator
discriminator = Discriminator()
discriminator.apply(init_weights)
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=opt.lrate, betas=(opt.beta, opt.beta1))
# Loss functions
a_loss = torch.nn.BCELoss()
# Labels
real_label = 0.9
fake_label = 0.0
FT = torch.LongTensor
FT_a = torch.FloatTensor
if cuda:
generator.cuda()
discriminator.cuda()
a_loss.cuda()
FT = torch.cuda.LongTensor
FT_a = torch.cuda.FloatTensor
# training
for epoch in range(opt.epoch):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# convert img, labels into proper form
imgs = Variable(imgs.type(FT_a))
labels = Variable(labels.type(FT))
# creating real and fake tensors of labels
reall = Variable(FT_a(batch_size,1).fill_(real_label))
f_label = Variable(FT_a(batch_size,1).fill_(fake_label))
# initializing gradient
gen_optimizer.zero_grad()
d_optimizer.zero_grad()
#### TRAINING GENERATOR ####
# Feeding generator noise and labels
noise = Variable(FT_a(np.random.normal(0, 1,(batch_size, opt.latentdim))))
gen_labels = Variable(FT(np.random.randint(0, opt.n_classes, batch_size)))
gen_imgs = generator(noise, gen_labels)
# Ability for discriminator to discern the real v generated images
validity = discriminator(gen_imgs, gen_labels)
# Generative loss function
g_loss = a_loss(validity, reall)
# Gradients
g_loss.backward()
gen_optimizer.step()
#### TRAINING DISCRIMINTOR ####
d_optimizer.zero_grad()
# Loss for real images and labels
validity_real = discriminator(imgs, labels)
d_real_loss = a_loss(validity_real, reall)
# Loss for fake images and labels
validity_fake = discriminator(gen_imgs.detach(), gen_labels)
d_fake_loss = a_loss(validity_fake, f_label)
# Total discriminator loss
d_loss = 0.5 * (d_fake_loss+d_real_loss)
# calculates discriminator gradients
d_loss.backward()
d_optimizer.step()
if i%100 == 0:
vutils.save_image(gen_imgs, '%s/real_samples.png' % opt.output, normalize=True)
fake = generator(noise, gen_labels)
vutils.save_image(fake.detach(), '%s/fake_samples_epoch_%03d.png' % (opt.output, epoch), normalize=True)
print("[Epoch: %d/%d]" "[D loss: %f]" "[G loss: %f]" % (epoch+1, opt.epoch, d_loss.item(), g_loss.item()))
# checkpoints
torch.save(generator.state_dict(), '%s/generator_epoch_%d.pth' % (opt.output, epoch))
torch.save(discriminator.state_dict(), '%s/generator_epoch_%d.pth' % (opt.output, epoch))