forked from rishabhgarg25699/Competitive-Programming
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongestPalindromicSubstringDP.java
114 lines (92 loc) · 3.41 KB
/
LongestPalindromicSubstringDP.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/**
* Java program to find the palindromic substrings in a
* string that are of maximum length (among palindromic
* substrings in the string), using bottom-up Dynamic
* Programming approach
*
* Algorithm:
* Let n denote the length of the string s; create a
* boolean 2D n x n array; initialize all to false
* (Any entry a[i][j] be true means the substring
* between indices i and j, both inclusive, is a
* palindromic substring)
* Initialize all a[i][i] to be true (all single
* character substrings are palindromic)
* If an entry a[i + 1][j - 1] is true and s(i) ==
* s(j), it means that substring between i and j
* is palindromic, as substring between i + 1 and
* j - 1 is already found to be a substring
* Keep count of maximum length while verifying
* To find the list of longest palindromic substrings
* after completion of the array filling, check for
* all a[i][i], if a[i][i + maxLength - 1] is true
* the substring between i and i + maxLength - 1 is
* a longest palindromic substring
*
* Example array after filling:
* b a n a n a
* -----------
* b | 1 0 0 0 0 0
* a | 0 1 0 0 0 0
* n | 0 0 1 0 0 0
* a | 0 0 0 1 0 0
* n | 0 0 0 0 1 0
* a | 0 0 0 0 0 1
*
* Longest Palindromic Substring/s: anana
*/
import java.util.ArrayList;
class LongestPalindromicSubstringDP {
public static void main(String args[]) {
// query string
String s = "kookaburrua";
// getting the list of Longest Palindromic Substrings
// and finding the length
ArrayList<String> strings = getLongPalinSubstr(s);
int lenMax = strings.size() == 0 ? 0 : strings.get(0).length();
System.out.println("Query String: " + s);
System.out.println("\nLength of Longest Palindromic Substrings: " + lenMax);
System.out.println("\nLongest Palindromic Substrings: ");
for (String i : strings)
System.out.println(" - " + i);
}
// method to find the list of the Longest Palindromic
// Substrings of a given string
static ArrayList<String> getLongPalinSubstr(String s) {
int len = s.length();
boolean arr[][] = new boolean[len][len];
// filling true for substrings of length 1
for (int i = 0; i < len; i++)
arr[i][i] = true;
// initializing maximum length of longest palindromic
// substring to 1, as it is the minimum
int lenMax = 1;
// filling true for length 2
for (int i = 0; i < len - 1; i++) {
if (s.charAt(i) == s.charAt(i + 1)) {
arr[i][i + 1] = true;
lenMax = 2;
}
}
// filling true for length 3 and up
for (int k = 3; k <= len; k++) {
for (int i = 0; i < len - k + 1; i++) {
int j = i + k - 1;
if (arr[i + 1][j - 1] &&
s.charAt(i) == s.charAt(j)) {
arr[i][j] = true;
lenMax = k;
}
}
}
// creating the list of longest palindromic substrings
ArrayList<String> strings = new ArrayList<>();
for (int i = 0; i < len; i++) {
if ((i + lenMax - 1) >= len)
break;
if (arr[i][i + lenMax - 1])
strings.add(s.substring(i, i + lenMax));
}
return strings;
}
}