-
Notifications
You must be signed in to change notification settings - Fork 16
/
run.py
756 lines (663 loc) · 31.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
"""Script to run end-to-end evaluation on the benchmark.
Modified from https://github.com/web-arena-x/webarena/blob/main/run.py.
"""
import argparse
import collections
import copy
import glob
import heapq
import json
import logging
import os
import random
import subprocess
import tempfile
import time
from pathlib import Path
from typing import List
import openai
import requests
import torch
from PIL import Image
from agent import (
PromptAgent,
construct_agent,
value_function
)
from agent.prompts import *
from browser_env import (
Action,
ActionTypes,
ScriptBrowserEnv,
StateInfo,
Trajectory,
create_stop_action,
)
from browser_env.actions import is_equivalent, create_goto_url_action
from browser_env.auto_login import get_site_comb_from_filepath
from browser_env.helper_functions import (
RenderHelper,
get_action_description,
)
from evaluation_harness import evaluator_router, image_utils
DATASET = os.environ["DATASET"]
LOG_FOLDER = "log_files"
Path(LOG_FOLDER).mkdir(parents=True, exist_ok=True)
LOG_FILE_NAME = f"{LOG_FOLDER}/log_{time.strftime('%Y%m%d%H%M%S', time.localtime())}_{random.randint(0, 10000)}.log"
logger = logging.getLogger("logger")
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
file_handler = logging.FileHandler(LOG_FILE_NAME)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(file_handler)
# Set the log format
formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
def config() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Run end-to-end evaluation on the benchmark"
)
parser.add_argument(
"--render", action="store_true", help="Render the browser"
)
parser.add_argument(
"--slow_mo",
type=int,
default=0,
help="Slow down the browser by the specified amount",
)
parser.add_argument(
"--action_set_tag", default="id_accessibility_tree", help="Action type"
)
parser.add_argument(
"--observation_type",
choices=[
"accessibility_tree",
"accessibility_tree_with_captioner",
"html",
"image",
"image_som",
],
default="accessibility_tree",
help="Observation type",
)
parser.add_argument(
"--current_viewport_only",
action="store_true",
help="Only use the current viewport for the observation",
)
parser.add_argument("--viewport_width", type=int, default=1280)
parser.add_argument("--viewport_height", type=int, default=2048)
parser.add_argument("--save_trace_enabled", action="store_true")
parser.add_argument("--sleep_after_execution", type=float, default=0.0)
parser.add_argument("--max_steps", type=int, default=30)
# agent config
parser.add_argument("--agent_type", type=str, default="prompt", choices=["prompt", "search"])
parser.add_argument(
"--instruction_path",
type=str,
default="agents/prompts/state_action_agent.json",
)
parser.add_argument(
"--parsing_failure_th",
help="When consecutive parsing failures exceed this threshold, the agent will terminate early.",
type=int,
default=3,
)
parser.add_argument(
"--repeating_action_failure_th",
help="When consecutive repeated actions exceed this threshold, the agent will terminate early.",
type=int,
default=5,
)
parser.add_argument("--test_config_base_dir", type=str)
parser.add_argument(
"--eval_captioning_model_device",
type=str,
default="cpu",
choices=["cpu", "cuda"],
help="Device to run eval captioning model on. By default, runs it on CPU.",
)
parser.add_argument(
"--eval_captioning_model",
type=str,
default="Salesforce/blip2-flan-t5-xl",
choices=["Salesforce/blip2-flan-t5-xl"],
help="Captioning backbone for VQA-type evals.",
)
parser.add_argument(
"--captioning_model",
type=str,
default="Salesforce/blip2-flan-t5-xl",
choices=["Salesforce/blip2-flan-t5-xl", "llava-hf/llava-1.5-7b-hf"],
help="Captioning backbone for accessibility tree alt text.",
)
# lm config
parser.add_argument("--provider", type=str, default="openai")
parser.add_argument("--model", type=str, default="gpt-3.5-turbo-0613")
parser.add_argument("--mode", type=str, default="chat")
parser.add_argument("--temperature", type=float, default=1.0)
parser.add_argument("--top_p", type=float, default=0.9)
parser.add_argument("--context_length", type=int, default=0)
parser.add_argument("--max_tokens", type=int, default=384)
parser.add_argument("--stop_token", type=str, default=None)
parser.add_argument(
"--max_retry",
type=int,
help="max retry times to perform generations when parsing fails",
default=1,
)
parser.add_argument(
"--max_obs_length",
type=int,
help="when not zero, will truncate the observation to this length before feeding to the model",
default=3840,
)
# search config
parser.add_argument("--max_depth", type=int, default=4, help="Max depth for search agents.")
parser.add_argument("--branching_factor", type=int, default=5, help="Branching factor at each step for the search agent.")
parser.add_argument("--search_algo", type=str, default="vf", help="Search algorithm to use", choices=["vf", "bfs", "dfs"])
parser.add_argument("--vf_budget", type=int, default=20, help="Budget for the number of value function evaluations.")
parser.add_argument("--value_function", type=str, default="gpt4o", help="What value function to use.", choices=["gpt4o"])
# example config
parser.add_argument("--test_idx", type=str, default=None, help="Idx to test")
parser.add_argument("--test_start_idx", type=int, default=0)
parser.add_argument("--test_end_idx", type=int, default=910)
# logging related
parser.add_argument("--result_dir", type=str, default="")
args = parser.parse_args()
# check the whether the action space is compatible with the observation space
if (
args.action_set_tag == "id_accessibility_tree"
and args.observation_type
not in [
"accessibility_tree",
"accessibility_tree_with_captioner",
"image_som",
]
):
raise ValueError(
f"Action type {args.action_set_tag} is incompatible with the observation type {args.observation_type}"
)
return args
def early_stop(
trajectory: Trajectory, max_steps: int, thresholds: dict[str, int]
) -> tuple[bool, str]:
"""Check whether need to stop early"""
# reach the max step
num_steps = (len(trajectory) - 1) / 2
if num_steps >= max_steps:
return True, f"Reach max steps {max_steps}"
last_k_actions: list[Action]
action_seq: list[Action]
# Case: parsing failure for k times
k = thresholds["parsing_failure"]
last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment]
if len(last_k_actions) >= k:
if all(
[
action["action_type"] == ActionTypes.NONE
for action in last_k_actions
]
):
return True, f"Failed to parse actions for {k} times"
# Case: same action for k times
k = thresholds["repeating_action"]
last_k_actions = trajectory[1::2][-k:] # type: ignore[assignment]
action_seq = trajectory[1::2] # type: ignore[assignment]
if len(action_seq) == 0:
return False, ""
last_action: Action = action_seq[-1]
if last_action["action_type"] != ActionTypes.TYPE:
if len(last_k_actions) >= k:
if all(
[
is_equivalent(action, last_action)
for action in last_k_actions
]
):
return True, f"Same action for {k} times"
else:
# check the action sequence
if (
sum([is_equivalent(action, last_action) for action in action_seq])
>= k
):
return True, f"Same typing action for {k} times"
return False, ""
def test(
args: argparse.Namespace,
config_file_list: list[str]
) -> None:
scores = []
max_steps = args.max_steps
branching_factor = args.branching_factor
assert args.vf_budget is not None, "Value function budget should be specified."
early_stop_thresholds = {
"parsing_failure": args.parsing_failure_th,
"repeating_action": args.repeating_action_failure_th,
}
if args.observation_type in [
"accessibility_tree_with_captioner",
"image_som",
]:
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if torch.cuda.is_available() else torch.float32
caption_image_fn = image_utils.get_captioning_fn(
device, dtype, args.captioning_model
)
else:
caption_image_fn = None
# Load a (possibly different) captioning model for running VQA evals.
if DATASET == 'visualwebarena':
if (
caption_image_fn
and args.eval_captioning_model == args.captioning_model
):
eval_caption_image_fn = caption_image_fn
else:
eval_caption_image_fn = image_utils.get_captioning_fn(
args.eval_captioning_model_device,
torch.float16
if (
torch.cuda.is_available()
and args.eval_captioning_model_device == "cuda"
)
else torch.float32,
args.eval_captioning_model,
)
else:
caption_image_fn = None
eval_caption_image_fn = None
agent = construct_agent(
args,
captioning_fn=caption_image_fn
if args.observation_type == "accessibility_tree_with_captioner"
else None,
) # NOTE: captioning_fn here is used for captioning input images.
env = ScriptBrowserEnv(
headless=not args.render,
slow_mo=args.slow_mo,
observation_type=args.observation_type,
current_viewport_only=args.current_viewport_only,
viewport_size={
"width": args.viewport_width,
"height": args.viewport_height,
},
save_trace_enabled=args.save_trace_enabled,
sleep_after_execution=args.sleep_after_execution,
# NOTE: captioning_fn here is used for LLM + captioning baselines.
# This can be different from the captioning model used for evals.
captioning_fn=caption_image_fn,
)
for config_file in config_file_list:
render_helper = RenderHelper(
config_file, args.result_dir, args.action_set_tag
)
try:
# Load task.
with open(config_file) as f:
_c = json.load(f)
intent = _c["intent"]
task_id = _c["task_id"]
image_paths = _c.get("image", None)
images = []
# automatically login
if _c["storage_state"]:
cookie_file_name = os.path.basename(_c["storage_state"])
comb = get_site_comb_from_filepath(cookie_file_name)
temp_dir = tempfile.mkdtemp()
# subprocess to renew the cookie
subprocess.run(
[
"python",
"browser_env/auto_login.py",
"--auth_folder",
temp_dir,
"--site_list",
*comb,
]
)
_c["storage_state"] = f"{temp_dir}/{cookie_file_name}"
assert os.path.exists(_c["storage_state"])
# update the config file
config_file = f"{temp_dir}/{os.path.basename(config_file)}"
with open(config_file, "w") as f:
json.dump(_c, f)
# Load input images for the task, if any.
if image_paths is not None:
if isinstance(image_paths, str):
image_paths = [image_paths]
for image_path in image_paths:
# Load image either from the web or from a local path.
if image_path.startswith("http"):
input_image = Image.open(requests.get(image_path, stream=True).raw)
else:
input_image = Image.open(image_path)
images.append(input_image)
logger.info(f"[Config file]: {config_file}")
logger.info(f"[Intent]: {intent}")
agent.reset(config_file)
trajectory: Trajectory = []
action_history = [] # Save the action history for the agent so that we can backtrack.
obs, info = env.reset(options={"config_file": config_file})
state_info: StateInfo = {"observation": obs, "info": info, "url": env.page.url}
trajectory.append(state_info)
meta_data = {"action_history": ["None"]}
step_idx = 0
while True:
step_idx += 1
early_stop_flag, stop_info = early_stop(
trajectory, max_steps, early_stop_thresholds
)
if early_stop_flag:
action = create_stop_action(f"Early stop: {stop_info}")
else:
try:
action = agent.next_action(
trajectory,
intent,
images=images,
meta_data=meta_data,
branching_factor=branching_factor
)
except ValueError as e:
# get the error message
action = create_stop_action(f"ERROR: {str(e)}")
# BEGIN SEARCH
if args.agent_type == "search" and type(action) == list:
evaluator = evaluator_router(
config_file, captioning_fn=eval_caption_image_fn
)
best_score, best_actions = None, []
all_candidates = []
all_inputs = [] # For input to the value function computation.
def take_action_and_score(a, curr_trajectory, curr_action_history,
curr_obs_metadata, last_screenshots: list[Image.Image],
generate_next_actions: bool = True, depth: int = 0,
branching_factor: int = 5, a_idx: int = -1, curr_a_idx: int = -1):
"""Take the given actions and score the resulting trajectory."""
temp_trajectory = copy.deepcopy(curr_trajectory)
temp_action_history = copy.deepcopy(curr_action_history)
should_generate_next_actions = generate_next_actions
img_after_path = f"{task_id}_step{step_idx}_action{a_idx}_depth{depth}_curra{curr_a_idx}_after.png"
obs, _, terminated, _, info = env.step(a)
# Save the image after the action.
obs_img = Image.fromarray(obs["image"])
all_inputs.append({
"text": obs["text"],
"image": obs["image"],
"image_after_path": img_after_path,
"action": a["raw_prediction"],
})
temp_trajectory.append(a)
# Get natural language description of current action
curr_action_str = get_action_description(
a, curr_obs_metadata, action_set_tag=args.action_set_tag,
prompt_constructor=agent.prompt_constructor if isinstance(agent, PromptAgent) else None,
)
temp_action_history.append(curr_action_str)
if a["action_type"] == ActionTypes.STOP:
should_generate_next_actions = False
elif a["action_type"] != ActionTypes.STOP:
temp_trajectory.append({"observation": obs, "info": info, "url": env.page.url})
elif terminated:
should_generate_next_actions = False
temp_trajectory.append(create_stop_action(""))
start_time = time.time()
# Only evaluate terminating trajectories
try:
if args.value_function in ["gpt4o"]:
score = value_function.evaluate_success(
screenshots=last_screenshots[-(args.max_depth+1):] + [obs_img], actions=temp_action_history,
current_url=env.page.url, last_reasoning=a["raw_prediction"],
intent=intent, models=["gpt-4o-2024-05-13"],
intent_images=images if len(images) > 0 else None)
else:
raise NotImplementedError(f"Value function {args.value_function} not implemented")
except Exception as e:
print(f"Error in evaluator: {e}")
score = 0
next_actions = []
if score < 1 and should_generate_next_actions:
start_time = time.time()
temp_early_stop_flag, _ = early_stop(
temp_trajectory, max_steps, early_stop_thresholds
)
if not temp_early_stop_flag:
try:
# Generate possible action candidates for next step.
next_actions = agent.next_action(
temp_trajectory,
intent,
images=images,
meta_data=meta_data,
branching_factor=branching_factor
)
except ValueError as e:
# get the error message
print('Failed to generate next actions:', e)
return score, temp_trajectory, temp_action_history, next_actions
def maybe_update_best_action(score, actions):
nonlocal best_score, best_actions
# The second if statement checks that for scores < 1 that are tied, we should take the one that doesn't terminate.
if (best_score is None) or (score > best_score):
best_score, best_actions = score, actions
max_depth = args.max_depth # Lookahead of trajectories of length (max_depth + 1)
action_queue = [] # Store tuple of (score, a_idx, action, trajectory, depth, ...)
actions_at_depth = collections.defaultdict(int)
search_counter = 0
for a_idx, a in enumerate(action):
# Default the score of the initial actions to 0.5.
item = (-0.5, a_idx, -1, search_counter, [a], copy.deepcopy(trajectory), copy.deepcopy(meta_data["action_history"]), 0)
if args.search_algo == "bfs":
action_queue.append(item)
elif args.search_algo == "dfs":
action_queue.append(item)
elif args.search_algo == "vf":
heapq.heappush(action_queue, item)
while action_queue and search_counter < args.vf_budget:
if args.search_algo == "bfs":
item = action_queue.pop(0)
elif args.search_algo == "dfs":
item = action_queue.pop(-1)
elif args.search_algo == "vf":
item = heapq.heappop(action_queue)
curr_score, a_idx, curr_a_idx, _, curr_actions, curr_trajectory, curr_action_history, curr_depth = item
search_counter += 1
next_action = curr_actions[-1]
actions_at_depth[curr_depth] += 1
assert len(curr_actions) == curr_depth + 1, f"(depth+1) should be equal to the number of actions taken, but got {len(curr_actions)} and {curr_depth+1}"
if next_action["action_type"] == ActionTypes.NONE:
maybe_update_best_action(0, curr_actions)
else:
last_screenshots = []
# Reset environment to prepare for next action.
_ = env.reset(options={"config_file": config_file})
# Take all the previous actions to get back to the current state.
start_time = time.time()
for a_hist in action_history:
obs, _, _, _, info = env.step(a_hist)
last_screenshots.append(Image.fromarray(obs["image"]))
# Take all previous actions in the current trajectory.
start_time = time.time()
for a in curr_actions[:-1]:
obs, _, _, _, info = env.step(a)
last_screenshots.append(Image.fromarray(obs["image"])) # 1e-5s
# Take the next action to evaluate.
start_time = time.time()
score, new_trajectory, new_action_history, next_actions = take_action_and_score(
next_action, curr_trajectory, curr_action_history,
copy.deepcopy(info["observation_metadata"]), last_screenshots=last_screenshots[-4:],
generate_next_actions=(curr_depth < max_depth),
depth=curr_depth, branching_factor=branching_factor, a_idx=a_idx, curr_a_idx=curr_a_idx)
raw_pred = next_action['raw_prediction'].split('\n')[-1]
all_candidates.append(f'a_idx={a_idx},curr_a_idx={curr_a_idx},depth={curr_depth}: {next_action["raw_prediction"]} (score: {score}, time: {time.time() - start_time})')
maybe_update_best_action(score, curr_actions)
# Try for next action (if allowed)
if score == 1:
break
else:
# Add next actions to the queue.
for na_idx, na in enumerate(next_actions):
item = (-score, a_idx, na_idx, search_counter, curr_actions + [na], copy.deepcopy(new_trajectory),copy.deepcopy(new_action_history), curr_depth + 1)
if args.search_algo == "vf":
heapq.heappush(action_queue, item)
else:
action_queue.append(item)
else:
all_candidates = []
best_actions = [action]
best_score = None
stop_trajectory = False
if args.agent_type == "search":
# Reset environment to the actual current state to prepare for taking the best action.
_ = env.reset(options={"config_file": config_file})
prev_url = env.page.url
truncated_action_history = []
for a_hist in action_history:
_ = env.step(a_hist)
curr_url = env.page.url
# Optimization to simplify the action history, since we will commit the best action.
truncated_action_history.append(a_hist)
if curr_url != prev_url:
# URL has changed, update the truncated_action_history
truncated_action_history = [create_goto_url_action(curr_url)]
prev_url = curr_url
action_history = truncated_action_history
prev_url = env.page.url
# Now we can actually execute the best action.
for best_idx, action in enumerate(best_actions):
all_candidates.append(f"Selected action {best_idx}: {action['raw_prediction']}")
trajectory.append(action)
action_str = get_action_description(
action,
state_info["info"]["observation_metadata"],
action_set_tag=args.action_set_tag,
prompt_constructor=agent.prompt_constructor
if isinstance(agent, PromptAgent)
else None,
)
render_helper.render(
action, state_info, meta_data, args.render_screenshot, all_candidates if args.agent_type == "search" else None
)
meta_data["action_history"].append(action_str)
if action["action_type"] == ActionTypes.STOP:
stop_trajectory = True
break
obs, _, terminated, _, info = env.step(action)
# Save the committed action to the action history.
action_history.append(action)
curr_url = env.page.url
if curr_url != prev_url:
# URL has changed, simplify the action_history so that we resume from this checkpoint
action_history = [create_goto_url_action(curr_url)]
prev_url = curr_url
state_info = {"observation": obs, "info": info, "url": env.page.url}
trajectory.append(state_info)
if terminated:
# add a action place holder
trajectory.append(create_stop_action(""))
stop_trajectory = True
break
# We solved the task and can quit.
if stop_trajectory or (best_score is not None and best_score == 1.0):
# Save obs
break
# END SEARCH
# NOTE: eval_caption_image_fn is used for running eval_vqa functions.
evaluator = evaluator_router(
config_file, captioning_fn=eval_caption_image_fn
)
score = evaluator(
trajectory=trajectory,
config_file=config_file,
page=env.page
)
scores.append(score)
if score == 1:
logger.info(f"[Result] (PASS) {config_file}")
else:
logger.info(f"[Result] (FAIL) {config_file}")
if args.save_trace_enabled:
env.save_trace(
Path(args.result_dir) / "traces" / f"{task_id}.zip"
)
except openai.OpenAIError as e:
logger.info(f"[OpenAI Error] {repr(e)}")
except Exception as e:
logger.info(f"[Unhandled Error] {repr(e)}]")
import traceback
# write to error file
with open(Path(args.result_dir) / "error.txt", "a") as f:
f.write(f"[Config file]: {config_file}\n")
f.write(f"[Unhandled Error] {repr(e)}\n")
f.write(traceback.format_exc()) # write stack trace to file
render_helper.close()
env.close()
if len(scores):
logger.info(f"Average score: {sum(scores) / len(scores)}")
def prepare(args: argparse.Namespace) -> None:
# convert prompt python files to json
from agent.prompts import to_json
to_json.run()
# prepare result dir
result_dir = args.result_dir
if not result_dir:
result_dir = (
f"cache/results_{time.strftime('%Y%m%d%H%M%S', time.localtime())}"
)
if not Path(result_dir).exists():
Path(result_dir).mkdir(parents=True, exist_ok=True)
args.result_dir = result_dir
logger.info(f"Create result dir: {result_dir}")
if not (Path(result_dir) / "traces").exists():
(Path(result_dir) / "traces").mkdir(parents=True)
# log the log file
with open(os.path.join(result_dir, "log_files.txt"), "a+") as f:
f.write(f"{LOG_FILE_NAME}\n")
def get_unfinished(config_files: list[str], result_dir: str) -> list[str]:
result_files = glob.glob(f"{result_dir}/*.html")
task_ids = [
os.path.basename(f).split(".")[0].split("_")[1] for f in result_files
]
unfinished_configs = []
for config_file in config_files:
task_id = os.path.basename(config_file).split(".")[0]
if task_id not in task_ids:
unfinished_configs.append(config_file)
return unfinished_configs
def dump_config(args: argparse.Namespace) -> None:
config_file = Path(args.result_dir) / "config.json"
if not config_file.exists():
with open(config_file, "w") as f:
json.dump(vars(args), f, indent=4)
logger.info(f"Dump config to {config_file}")
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args = config()
args.sleep_after_execution = 2.5
prepare(args)
test_config_base_dir = args.test_config_base_dir
test_file_list = []
if args.test_idx is not None:
print(f"Testing on {args.test_idx}")
for x in args.test_idx.split(","):
test_file_list.append(os.path.join(test_config_base_dir, f"{x}.json"))
else:
print(f"Testing on {args.test_start_idx} to {args.test_end_idx}")
st_idx = args.test_start_idx
ed_idx = args.test_end_idx
for i in range(st_idx, ed_idx):
test_file_list.append(os.path.join(test_config_base_dir, f"{i}.json"))
test_file_list = get_unfinished(test_file_list, args.result_dir)
print(f"Total {len(test_file_list)} tasks left")
args.render = False
args.render_screenshot = True
args.save_trace_enabled = True
args.current_viewport_only = True
dump_config(args)
test(args, test_file_list)