-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizer.py
222 lines (185 loc) · 9.05 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from keras import backend as K
from six.moves import zip
from keras.optimizers import Optimizer
from keras.legacy import interfaces
class OFRL(Optimizer):
def __init__(self, lr=0.01, version=1., decay=0.,
schedule=None, m_rho=0.1, adagrad_epsilon=1e-08, **kwargs):
super(OFRL, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.decay = K.variable(decay, name='decay')
self.version = version
self.schedule = schedule
self.m_rho = m_rho
self.adagrad_epsilon = adagrad_epsilon
self.initial_decay = decay
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
shapes = [K.int_shape(p) for p in params]
predictable = [K.zeros(shape) for shape in shapes]
grad_sqr_accum = [K.zeros(shape) for shape in shapes]
scheduler = [K.ones(shape) for shape in shapes]
self.weights = [self.iterations] + predictable
t = K.cast(self.iterations, K.floatx()) + 1
for p, g, m, a, s in zip(params, grads, predictable, grad_sqr_accum, scheduler):
# Update M
if self.version == 1:
new_m = g
elif self.version == 2:
new_m = (m * (t - 1) + g) / t
elif self.version == 3:
new_m = m * self.m_rho + (1-self.m_rho) * g
else:
raise ValueError('self.version {} is not recognized'.format(self.version))
# Update the sum of squared gradient
new_a = a + K.square(g)
# Update learning rate schedule
if self.schedule is None:
new_s = s
elif self.schedule == 'adagrad':
new_s = s / (K.sqrt(new_a) + self.adagrad_epsilon)
#new_s = s
else:
raise ValueError('self.schedule {} is not recognized'.format(self.schedule))
# Update params
new_p = self.update_param(p, g, lr, m, new_m, s, new_s)
# Finally, apply the updates
self.updates.append(K.update(m, new_m))
self.updates.append(K.update(a, new_a))
self.updates.append(K.update(s, new_s))
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def update_param(self, p, g, lr, m, new_m, s, new_s):
return new_s / s * p + lr * new_s * (m - new_m - g)
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'decay': float(K.get_value(self.decay)),
'schedule': self.schedule,
'version': self.version,
'm_rho': self.m_rho,
'adagrad_epsilon': self.adagrad_epsilon,
}
base_config = super(OFRL, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class OMDA(OFRL):
def update_param(self, p, g, lr, m, new_m, s, new_s):
return p + lr * (s * m - s * g - new_s * new_m)
class optimAdam(Optimizer):
"""Adam optimizer.
Default parameters follow those provided in the original paper.
# Arguments
lr: float >= 0. Learning rate.
beta_1: float, 0 < beta < 1. Generally close to 1.
beta_2: float, 0 < beta < 1. Generally close to 1.
epsilon: float >= 0. Fuzz factor.
decay: float >= 0. Learning rate decay over each update.
# References
- [Adam - A Method for Stochastic Optimization](http://arxiv.org/abs/1412.6980v8)
"""
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
epsilon=1e-8, decay=0., **kwargs):
super(optimAdam, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.iterations = K.variable(0, dtype='int64', name='iterations')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.decay = K.variable(decay, name='decay')
self.epsilon = epsilon
self.initial_decay = decay
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
t = K.cast(self.iterations, K.floatx()) + 1
lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) /
(1. - K.pow(self.beta_1, t)))
ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
self.weights = [self.iterations] + ms + vs
ms_old = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
vs_old = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
for p, g, m, v, m_old, v_old in zip(params, grads, ms, vs, ms_old, vs_old):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
p_t = p - 2 * lr_t * m_t / (K.sqrt(v_t) + self.epsilon) + lr_t * m_old / (K.sqrt(v_old) + self.epsilon)
self.updates.append(K.update(m_old, m))
self.updates.append(K.update(v_old, v))
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'beta_1': float(K.get_value(self.beta_1)),
'beta_2': float(K.get_value(self.beta_2)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon}
base_config = super(optimAdam, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class optimAdagrad(Optimizer):
"""Adagrad optimizer.
It is recommended to leave the parameters of this optimizer
at their default values.
# Arguments
lr: float >= 0. Learning rate.
epsilon: float >= 0. If `None`, defaults to `K.epsilon()`.
decay: float >= 0. Learning rate decay over each update.
# References
- [Adaptive Subgradient Methods for Online Learning and Stochastic Optimization](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf)
"""
def __init__(self, lr=0.01, epsilon=None, decay=0., **kwargs):
super(optimAdagrad, self).__init__(**kwargs)
with K.name_scope(self.__class__.__name__):
self.lr = K.variable(lr, name='lr')
self.decay = K.variable(decay, name='decay')
self.iterations = K.variable(0, dtype='int64', name='iterations')
if epsilon is None:
epsilon = K.epsilon()
self.epsilon = epsilon
self.initial_decay = decay
@interfaces.legacy_get_updates_support
def get_updates(self, loss, params):
grads = self.get_gradients(loss, params)
shapes = [K.int_shape(p) for p in params]
accumulators = [K.zeros(shape) for shape in shapes]
self.weights = accumulators
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * K.cast(self.iterations,
K.dtype(self.decay))))
for p, g, a in zip(params, grads, accumulators):
new_a = a + K.square(g) # update accumulator
new_p = p - lr * g / (K.sqrt(new_a) + self.epsilon) + lr * g * K.clip(K.cast(self.iterations, K.floatx())-1, 0, 1) * (1 / (K.sqrt(a) + self.epsilon) - 1 / (K.sqrt(new_a) + self.epsilon))
self.updates.append(K.update(a, new_a))
# Apply constraints.
if getattr(p, 'constraint', None) is not None:
new_p = p.constraint(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_config(self):
config = {'lr': float(K.get_value(self.lr)),
'decay': float(K.get_value(self.decay)),
'epsilon': self.epsilon}
base_config = super(optimAdagrad, self).get_config()
return dict(list(base_config.items()) + list(config.items()))