-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompiler.rkt
703 lines (630 loc) · 33 KB
/
compiler.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#lang racket
(require racket/match racket/list racket/set graph)
(require "interp-Lif.rkt")
(require "interp-Cif.rkt")
(require "type-check-Lif.rkt")
(require "type-check-Cif.rkt")
(require "utilities.rkt")
(require "interp.rkt")
(require "interp-Lint.rkt")
(require "interp-Lvar.rkt")
(require "interp-Cvar.rkt")
(require "type-check-Lvar.rkt")
(require "type-check-Cvar.rkt")
(require "interp-Lwhile.rkt")
(require "interp-Cwhile.rkt")
(require "type-check-Lwhile.rkt")
(require "type-check-Cwhile.rkt")
(require "interp-Lvec.rkt")
(require "interp-Lvec-prime.rkt")
(require "interp-Cvec.rkt")
(require "type-check-Lvec.rkt")
(require "type-check-Cvec.rkt")
(require "multigraph.rkt")
; (require "runtime.c")
(provide (all-defined-out))
(define basic-blocks '())
(define (remove-and-or e)
(match e
[(Void) (Void)]
[(or (Bool _) (Int _) (Var _)) e]
[(If e1 e2 e3) (If (remove-and-or e1) (remove-and-or e2) (remove-and-or e3))]
[(Prim 'read '()) (Prim 'read '())]
[(Prim 'and (list e1 e2)) (If (remove-and-or e1) (remove-and-or e2) (Bool #f))]
[(Prim 'or (list e1 e2)) (If (remove-and-or e1) (Bool #t) (remove-and-or e2))]
[(Prim op es) (Prim op (for/list ([e es]) (remove-and-or e)))]
[(Let x ex body) (Let x (remove-and-or ex) (remove-and-or body))]
[(SetBang var rhs) (SetBang var (remove-and-or rhs))]
[(Begin body rhs) (Begin (for/list ([e body]) (remove-and-or e)) (remove-and-or rhs))]
[(WhileLoop cnd ex) (WhileLoop (remove-and-or cnd) (remove-and-or ex))]))
(define (shrink p)
(match p
[(Program info body) (Program info (remove-and-or body))]))
(define (uniquify-exp env)
(lambda (e)
(match e
[(Void) (Void)]
[(Var x) (Var (dict-ref env x))]
[(or (Int _) (Bool _)) e]
[(Let x e body) (let [(x-uniq (gensym))]
(let [(new-uniq-pass (uniquify-exp (dict-set env x x-uniq)))]
(Let x-uniq (new-uniq-pass e) (new-uniq-pass body))))]
[(If e1 e2 e3) (If ((uniquify-exp env) e1) ((uniquify-exp env) e2) ((uniquify-exp env) e3))]
[(Prim op es)
(Prim op (for/list ([e es]) ((uniquify-exp env) e)))]
[(SetBang var rhs) (SetBang (dict-ref env var) ((uniquify-exp env) rhs))]
[(Begin body rhs) (Begin (for/list ([e body]) ((uniquify-exp env) e)) ((uniquify-exp env) rhs))]
[(WhileLoop cnd e) (WhileLoop ((uniquify-exp env) cnd) ((uniquify-exp env) e))])))
;; uniquify : Lvar -> Lvar
(define (uniquify p)
(match p
[(Program info e) (Program info ((uniquify-exp '()) e))]))
(define (collect-set! e)
(match e
[(Void) (set)]
[(Var x) (set)]
[(Int n) (set)]
[(Bool b) (set)]
[(Let x rhs body) (set-union (collect-set! rhs) (collect-set! body))]
[(SetBang var rhs) (set-union (set var) (collect-set! rhs))]
[(If cnd thn els) (set-union (collect-set! cnd) (collect-set! thn) (collect-set! els))]
[(Begin body rhs) (set-union
(foldr
(lambda (es set!-vars)
(set-union (collect-set! es) set!-vars))
(collect-set! rhs) body)
(collect-set! rhs))]
[(WhileLoop cnd e) (set-union (collect-set! cnd) (collect-set! e))]
[(Prim op es) (foldr
(lambda (sub-es set!-vars)
(set-union (collect-set! sub-es) set!-vars))
(set) es)]))
(define (uncover-get!-exp set!-vars e)
(match e
[(Void) e]
[(Var x)
(if (set-member? set!-vars x)
(GetBang x)
(Var x))]
[(or (Int _) (Bool _)) e]
[(Prim op es) (Prim op (for/list ([e es]) (uncover-get!-exp set!-vars e)))]
[(Let x rhs body) (Let x (uncover-get!-exp set!-vars rhs) (uncover-get!-exp set!-vars body))]
[(If e1 e2 e3) (If (uncover-get!-exp set!-vars e1) (uncover-get!-exp set!-vars e2) (uncover-get!-exp set!-vars e3))]
[(SetBang var rhs) (SetBang var (uncover-get!-exp set!-vars rhs))]
[(Begin body rhs) (Begin (for/list ([e body]) (uncover-get!-exp set!-vars e)) (uncover-get!-exp set!-vars rhs))]
[(WhileLoop cnd e) (WhileLoop (uncover-get!-exp set!-vars cnd) (uncover-get!-exp set!-vars e))]))
(define (uncover-get! p)
(match p
[(Program info body) (Program info (uncover-get!-exp (collect-set! body) body))]))
(define (expose-has-type es type)
(Let (gensym "_") (If (Prim '<
(list (Prim '+
(list (GlobalValue 'free_ptr)
(Int (+ 8 (* 8 (length es))))))
(GlobalValue 'fromspace_end)))
(Void)
(Collect (+ 8 (* 8 (length es)))))
(let ([v (gensym "vecinit")])
(let ([i -1])
(Let v (Allocate (length es) type)
(foldl
(lambda (x ex)
(set! i (+ i 1))
(Let (gensym "_")
(Prim 'vector-set! (list (Var v) (Int i) (expose-allocate x)))
ex))
(Var v) es))))))
(define (expose-allocate e)
(match e
[(HasType (Prim 'vector es) type) (expose-has-type es type)]
[(or (Int _) (Var _) (Bool _) (Void) (GetBang _)) e]
[(Prim op es) (Prim op (for/list [(e es)] (expose-allocate e)))]
[(Let x rhs body) (Let x (expose-allocate rhs) (expose-allocate body))]
[(If e1 e2 e3) (If (expose-allocate e1) (expose-allocate e2) (expose-allocate e3))]
[(SetBang x rhs) (SetBang x (expose-allocate rhs))]
[(Begin body rhs) (Begin (for/list [(e body)] (expose-allocate e)) (expose-allocate rhs))]
[(WhileLoop cnd body) (WhileLoop (expose-allocate cnd) (expose-allocate body))]))
(define (expose-allocation p)
(match p
[(Program info body) (Program info (expose-allocate body))]))
(define (rco-exp env)
(lambda (e)
(match e
[(Begin body (GetBang x)) (let [(y ((rco-atom env) x))] (Let y (Begin (for/list ([e body]) ((rco-exp env) e)) (Var x)) (Var y)))]
[(Begin body rhs) (Begin (for/list ([e body]) ((rco-exp env) e)) ((rco-exp env) rhs))]
[(SetBang var rhs) (SetBang var ((rco-exp env) rhs))]
[(GetBang var) (Var var)]
[(WhileLoop cnd e) (WhileLoop ((rco-exp env) cnd) ((rco-exp env) e))]
[(Let x e body) (Let x ((rco-exp env) e) ((rco-exp env) body))]
[(or (Int _) (Var _) (Bool _) (Void)) e]
[(Prim 'read '()) (Prim 'read '())]
[(Prim op (list (or (Int _) (Var _) (Bool _)))) e]
[(Prim op (list (or (Int _) (Var _) (Bool _)) (or (Var _) (Int _) (Bool _)))) e]
[(Prim op (list e2)) (let [(x ((rco-atom env) e2))] (Let x ((rco-exp env) e2) (Prim op (list (Var x)))))]
[(Prim op (list e1 e2)) #:when (or (Int? e1) (Var? e1) (Bool? e1) (Void? e1)) (let [(x ((rco-atom env) e2))] (Let x ((rco-exp env) e2) ((rco-exp env) (Prim op (list e1 (Var x))))))]
[(Prim op (list e1 e2)) #:when (or (Int? e2) (Var? e2) (Bool? e2) (Void? e2)) (let [(x ((rco-atom env) e1))] (Let x ((rco-exp env) e1) ((rco-exp env) (Prim op (list (Var x) e2)))))]
[(Prim op (list e1 e2)) (let [(x ((rco-atom env) e1))] (let [(y ((rco-atom env) e2))] (Let x ((rco-exp env) e1) (Let y ((rco-exp env) e2) (Prim op (list (Var x) (Var y)))))))]
[(If e1 e2 e3) (If ((rco-exp env) e1) ((rco-exp env) e2) ((rco-exp env) e3))]
[(Collect _) e]
[(Allocate _ _) e]
[(GlobalValue _) e]
[(Prim op (list e1 e2 e3))
#:when (not (or (Int? e1) (Var? e1) (Bool? e1) (Void? e1)))
(let [(x (gensym))]
(Let x ((rco-exp env) e1)
((rco-exp env) (Prim op (list (Var x) e2 e3)))))]
[(Prim op (list e1 e2 e3))
#:when (not (or (Int? e2) (Var? e2) (Bool? e2) (Void? e2)))
(let [(x (gensym))]
(Let x ((rco-exp env) e2)
((rco-exp env) (Prim op (list e1 (Var x) e3)))))]
[(Prim op (list e1 e2 e3))
#:when (not (or (Int? e3) (Var? e3) (Bool? e3) (Void? e3)))
(let [(x (gensym))]
(Let x ((rco-exp env) e3)
((rco-exp env) (Prim op (list e1 e2 (Var x))))))]
[(Prim op (list _ _ _)) e])))
(define (rco-atom env)
(lambda (e)
(let [(x-uniq (gensym))] (dict-set env x-uniq e) x-uniq)))
;; remove-complex-opera* : Lvar -> Lvar^mon
(define (remove-complex-opera* p)
(match p
[(Program info e) (Program info ((rco-exp '()) e))]))
(define (explicate_tail e)
(match e
[(or (Bool _) (Var _) (Int _) (Void) (Allocate _ _) (GlobalValue _)) (Return e)]
[(Collect _) (Seq e (Return (Void)))]
[(Let x rhs body) (explicate_assign rhs x (explicate_tail body))]
[(SetBang x rhs) (explicate_assign rhs x (Return (Void)))]
[(Prim op es) (Return (Prim op es))]
[(If cnd thn els) (explicate_pred cnd (explicate_tail thn) (explicate_tail els))]
[(Begin body rhs) (foldl
(lambda (e tail)
(explicate_effect e tail))
(explicate_tail rhs) body)]
[else (error "explicate_tail unhandled case" e)]))
(define (create_block tail)
(match tail
[(Goto label) (Goto label)]
[else
(let ([label (gensym 'block)])
(set! basic-blocks (cons (cons label tail) basic-blocks))
(Goto label))]))
(define (explicate_assign e x cont)
(match e
[(or (GlobalValue _) (Allocate _ _)) (Seq (Assign (Var x) e) cont)]
[(or (Collect _) (Void)) (Seq (Assign (Var x) (Void)) cont)]
[(Bool b) (Seq (Assign (Var x) (Bool b)) cont)]
[(Var y) (Seq (Assign (Var x) (Var y)) cont)]
[(Int n) (Seq (Assign (Var x) (Int n)) cont)]
[(Let y rhs body) (explicate_assign rhs y (explicate_assign body x cont))]
[(Prim op es) (Seq (Assign (Var x) (Prim op es)) cont)]
[(If e1 e2 e3) (let ([l1 (create_block cont)])
(explicate_pred e1
(explicate_assign e2 x l1)
(explicate_assign e3 x l1)))]
[(Begin body rhs) (foldl
(lambda (e tail)
(explicate_effect e tail))
(explicate_assign rhs x cont) body)]
[(SetBang x rhs) (Seq (Assign (Var x) (Void)) cont)]
[else (error "explicate_assign unhandled case" e)]))
(define (explicate_let_in_if e thn els)
(match e
[(or (Bool _) (Int _) (Var _) (Void)) (explicate_pred e thn els)]
[(Prim op es) (explicate_pred (Prim op es) thn els)]
[(If _ _ _) (explicate_pred e thn els)]
[(Let x rhs body) (explicate_assign rhs x (explicate_let_in_if body thn els))]
[(Begin body rhs) (explicate_pred (Begin body rhs) thn els)]))
(define (explicate_pred cnd thn els)
(match cnd
[(Var x) (IfStmt (Prim 'eq? (list (Var x) (Int 0)))
(create_block els) (create_block thn))]
[(Int n) (IfStmt (Prim 'eq? (list (Int n) (Int 0)))
(create_block els) (create_block thn))]
[(Let x rhs body) (explicate_assign rhs x (explicate_let_in_if body thn els))]
[(Prim 'not (list e)) (explicate_pred e els thn)]
[(Prim op es) ;#:when (or (eq? op 'eq?) (eq? op '<))
(IfStmt (Prim op es) (create_block thn) (create_block els))]
[(Bool b) (if b thn els)]
[(If cnd^ thn^ els^) (explicate_pred cnd^
(create_block (explicate_pred thn^ thn els))
(create_block (explicate_pred els^ thn els)))]
[(Begin body rhs) (foldl
(lambda (e tail)
(explicate_effect e tail))
(explicate_pred rhs thn els) body)]
[else (error "explicate_pred unhandled case" cnd)]))
(define (explicate_effect e tail)
(match e
[(or (Allocate _ _) (GlobalValue _) (Collect _)) (Seq e tail)]
[(Begin body rhs) (foldl
(lambda (e t)
(explicate_effect e t))
(explicate_effect rhs tail) body)]
[(or (Bool _) (Int _) (Var _) (Void)) tail]
[(Prim op es) tail]
; [(If cnd thn els) ] ;need to complete
[(Let x rhs body) (explicate_assign rhs x (explicate_effect body tail))]
[(SetBang x rhs) (explicate_assign rhs x tail)]
[(WhileLoop cnd body) (let ([label (gensym 'block)])
(begin (set! basic-blocks (cons
(cons label
(explicate_pred cnd
(create_block (explicate_effect body (Goto label)))
(create_block tail)))
basic-blocks))
(Goto label)))]))
(define (explicate-wrap body info)
(let ([start (explicate_tail body)])
(set! basic-blocks (cons (cons 'start start) basic-blocks))
basic-blocks))
;; explicate-control : Lvar^mon -> Cvar
(define (explicate-control p)
(match p
[(Program info body) (CProgram info (explicate-wrap body info))]))
; (explicate-control (Program
; '()
; (Let
; 'g28612
; (Int 5)
; (Let
; 'g28613
; (Begin
; (list
; (WhileLoop
; (Let 'g28614 (Var 'g28612) (Prim '> (list (Var 'g28614) (Int 0))))
; (Begin
; '()
; (SetBang
; 'g28612
; (Let 'g28615 (Var 'g28612) (Prim '- (list (Var 'g28615) (Int 1))))))))
; (Var 'g28612))
; (Var 'g28613)))))
(define (select_atm a)
(match a
[(Bool #t) (Imm 1)]
[(Bool #f) (Imm 0)]
[(Int n) (Imm n)]
[(Var x) (Var x)]
[(Reg reg) (Reg reg)]
[(Void) (Imm 0)]
[(Imm n) (Imm n)]))
; atm ::= (Bool bool)
; cmp ::= eq?|<|<=|>|>=
; exp ::= (Prim ’not (atm)) | (Prim ’cmp (atm atm))
; tail ::= (Goto label) | (IfStmt (Prim cmp (atm atm)) (Goto label) (Goto label))
; Cif ::= (CProgram info ((label . tail) ... ))
(define (select_stmt e)
(match e
[(Prim 'read arg) (list (Callq 'read_int 0))]
[(Assign x (Bool #t)) (list (Instr 'movq (list (Imm 1) x)))]
[(Assign x (Bool #f)) (list (Instr 'movq (list (Imm 0) x)))]
[(Assign x (Int n)) (list (Instr 'movq (list (Imm n) x)))]
[(Assign x (Var y)) (list (Instr 'movq (list (Var y) x)))]
[(Assign x (Void)) (list (Instr 'movq (list (Imm 0) x)))]
[(Assign x (Prim '- (list atm))) (list (Instr 'movq (list (select_atm atm) x)) (Instr 'negq (list x)))]
[(Assign x (Prim 'not (list x))) (list (Instr 'xorq (list (Imm 1) x)))]
[(Assign x (Prim 'not (list atm))) (list (Instr 'movq (list (select_atm atm) x)) (Instr 'xorq (list (Imm 1) x)))]
[(Assign x (Prim '+ (list atm1 atm2))) (list (Instr 'movq (list (select_atm atm1) x)) (Instr 'addq (list (select_atm atm2) x)))]
[(Assign x (Prim '- (list atm1 atm2))) (list (Instr 'movq (list (select_atm atm1) x)) (Instr 'subq (list (select_atm atm2) x)))]
[(Assign x (Prim 'read arg)) (list (Callq 'read_int 0) (Instr 'movq (list (Reg 'rax) x)))]
[(Assign x (Prim 'eq? (list atm1 atm2))) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
(Instr 'sete (list (Reg 'al)))
(Instr 'movzbq (list (Reg 'al) x)))]
[(Assign x (Prim '< (list atm1 atm2))) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
(Instr 'setl (list (Reg 'al)))
(Instr 'movzbq (list (Reg 'al) x)))]
[(Assign x (Prim '<= (list atm1 atm2))) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
(Instr 'setle (list (Reg 'al)))
(Instr 'movzbq (list (Reg 'al) x)))]
[(Assign x (Prim '> (list atm1 atm2))) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
(Instr 'setg (list (Reg 'al)))
(Instr 'movzbq (list (Reg 'al) x)))]
[(Assign x (Prim '>= (list atm1 atm2))) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
(Instr 'setge (list (Reg 'al)))
(Instr 'movzbq (list (Reg 'al) x)))]))
(define (select_tail e)
(print e)
(match e
[(IfStmt (Prim 'eq? (list atm1 atm2)) (Goto l1) (Goto l2)) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
; (Instr 'je l1)
(JmpIf 'e l1)
(JmpIf 'l l2)
(JmpIf 'g l2))]
[(IfStmt (Prim '> (list atm1 atm2)) (Goto l1) (Goto l2)) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
; (Instr 'jg l1)
(JmpIf 'g l1)
(JmpIf 'le l2))]
[(IfStmt (Prim '>= (list atm1 atm2)) (Goto l1) (Goto l2)) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
; (Instr 'jge l1)
(JmpIf 'ge l1)
(JmpIf 'l l2))]
[(IfStmt (Prim '< (list atm1 atm2)) (Goto l1) (Goto l2)) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
; (Instr 'jl l1)
(JmpIf 'l l1)
(JmpIf 'ge l2))]
[(IfStmt (Prim '<= (list atm1 atm2)) (Goto l1) (Goto l2)) (list (Instr 'cmpq (list (select_atm atm1) (select_atm atm2)))
; (Instr 'jle l1)
(JmpIf 'le l1)
(JmpIf 'g l2))]
[(Goto l) (list (Instr 'cmpq (list (Imm 1) (Imm 1)))
(JmpIf 'le l))]
[(Seq stmt tail) (append (select_stmt stmt) (select_tail tail))]
[(Return ex) (append (select_stmt (Assign (Reg 'rax) ex)) (list (Jmp 'conclusion)))]))
;; stack space
(define (assign-stack-space info)
(cons (cons 'stack-space (* 16 (+ 1 (quotient (length (cdr (assoc 'locals-types info))) 2)))) info))
;; select-instructions : Cvar -> x86var
(define (select-instructions p)
(match p
[(CProgram info body) (X86Program (assign-stack-space info) (foldr (lambda (block prog)
(cons `(,(car block) . ,(Block info (select_tail (cdr block)))) prog))
'() body))]))
(define (patch_instr body)
(foldr (lambda (inst lst)
(match inst
[(Instr instr (list (Deref 'rbp n1) (Deref 'rbp n2)))
(append (list (Instr 'movq (list (Deref 'rbp n1) (Reg 'rax))) (Instr instr (list (Reg 'rax) (Deref 'rbp n2)))) lst)]
[(Instr instr (list (Imm n)))
#:when (> n 2e16)
(append (list (Instr 'movq (list (Imm n) (Reg 'rax))) (Instr instr (list (Reg 'rax)))) lst)]
[(Instr instr (list (Imm n) atm))
#:when (> n 2e16)
(append (list (Instr 'movq (list (Imm n) (Reg 'rax))) (Instr instr (list (Reg 'rax) atm))) lst)]
[(Instr instr (list atm (Imm n)))
#:when (> n 2e16)
(append (list (Instr 'movq (list (Imm n) (Reg 'rax))) (Instr instr (list atm (Reg 'rax)))) lst)]
[else (cons inst lst)])) '() body))
;; patch-instructions : x86var -> x86int
(define (patch-instructions p)
(match p
[(X86Program info (list (cons 'start (Block bl-info body)))) (X86Program info (list (cons 'start (Block bl-info (patch_instr body)))))]))
;; check system and spit out the correct label
;; Discontinued.
(define (correct-label str)
(string->uninterned-symbol (if (eq? (system-type 'os) 'macosx)
(string-append "_" str)
str)))
;; add prelude to the body
(define (preludify stack-space body)
(append body (list `(main . ,(Block '() (list (Instr 'pushq (list (Reg 'rbp)))
(Instr 'movq (list (Reg 'rsp) (Reg 'rbp)))
(Instr 'subq (list (Imm stack-space) (Reg 'rsp)))
(Jmp 'start)))))))
;; add conclusion to the body
(define (concludify stack-space body)
(append body (list `(conclusion . ,(Block '() (list (Instr 'addq (list (Imm stack-space) (Reg 'rsp)))
(Instr 'popq (list (Reg 'rbp)))
(Retq)))))))
;; prelude-and-conclusion : x86int -> x86int
(define (prelude-and-conclusion p)
(match p
[(X86Program info body) (let [(stack-space (cdr (assoc 'stack-space info)))]
(X86Program info
(concludify stack-space
(preludify stack-space body))))]))
;; compute the set of locations read by an instruction
;; arg? -> (set)
(define (get-loc arg)
(match arg
[(Reg r) (set r)]
[(Var x) (set x)]
[(Imm m) (set)]))
(define caller-saved-regs (set 'rax 'rcx 'rdx 'rsi 'rdi 'r8 'r9 'r10 'r11))
(define arg-passing-regs '(rdi rsi rdx rcx r8 r9))
;; locations written by an instruction
;; Instr? -> set?
(define (write-locs instr)
(match instr
[(Instr q (list _ a)) #:when (member q (list 'addq 'subq)) (get-loc a)]
[(Instr q (list a)) #:when (member q (list 'negq)) (get-loc a)] ;; ASSUMPTION: pushq popq are not reading the locations
[(Instr 'movq (list _ a2)) (get-loc a2)]
[(Retq) (set)]
([Callq _ _] caller-saved-regs)
([Jmp _] (set)) ;; TODO
))
;; The locations that are live before a jmp should be the locations in
;; Lbefore at the target of the jump. So, we recommend maintaining an
;; alist named label->live that maps each label to the Lbefore for the
;; first instruction in its block. For now the only jmp in a x86Var
;; program is the jump to the conclusion. (For example, see figure
;; 3.1.) The conclusion reads from rax and rsp, so the alist should
;; map conclusion to the set {rax, rsp}.
;; locations read by an instruction
;; Instr? -> set?
(define (read-locs instr)
(match instr
[(Instr q (list a1 a2)) #:when (member q (list 'addq 'subq)) (set-union (get-loc a1) (get-loc a2))]
[(Instr q (list a)) #:when (member q (list 'negq)) (get-loc a)] ;; ASSUMPTION: pushq popq are not reading the locations
[(Instr 'movq (list a1 a2)) (get-loc a1)]
[(Retq) (set)]
([Callq _ arity] (list->set (drop-right arg-passing-regs (- (length arg-passing-regs) arity))))
([Jmp 'conclusion] (set 'rax 'rsp))
))
;; (Instr?, set?) -> set?
(define (live-after-k-1 instr live-after-k)
(set-union (set-subtract live-after-k (write-locs instr)) (read-locs instr)))
;; returns a list of subsequences
;; (x1 x2 ... xn) -> ((x1 ... xn) (x2 ... xn) ... (xn))
;; list? -> [list?]
(define (sub-instr l)
(build-list (length l) (lambda (x) (drop l x))))
;; ([Instr?], set?) -> [set?]
(define (instr-to-live-after instrs initial)
(map (lambda (l-instr)
(foldr live-after-k-1 initial l-instr)) (sub-instr instrs)))
(define (update-blocks Block-pair)
(match Block-pair
[(cons label (Block info instrs)) (cons label (Block (dict-set info 'live-after (instr-to-live-after instrs (set))) instrs))]))
;; TODO
(define (label-live Block-pair)
(match Block-pair
[(cons label (Block info instrs)) (cons label (instr-to-live-after instrs (set)))]))
(define (find-edge-list label tail)
(foldl (lambda (instr edges)
(cons (match instr
[(JmpIf _ l) (label l)]
[else null])))
'() tail))
(define (create-cfg blocks)
(tsort (transpose (make-multigraph (foldl (lambda (bl edges)
(append (find-edge-list (car bl) (cdr bl))
edges))
'() blocks)))))
(define (uncover-live p)
(match p
[(X86Program info Block-alist) (X86Program info (map update-blocks Block-alist))]))
(define (get-final arg)
(match arg
[(Reg r) r]
[(Var x) x]
[(Imm m) '()] ;; TODO
))
; register allocation
(define (find-edges live-after body)
(foldr (lambda (live instr edges)
(append (match instr
[(Instr 'movq (list s d)) (foldr (lambda (v lst)
(cond
[(and (not (equal? (get-final s) v)) (not (equal? (get-final d) v))) (cons (list v (get-final d)) lst)]
[else lst]))
'() (set->list live))]
[(Callq _ _) (foldr (lambda (v lst)
(append (list (list v 'rax) (list v 'rcx) (list v 'rdx) (list v 'rsi)
(list v 'rdi) (list v 'r8) (list v 'r9) (list v 'r10) (list v 'r11))
lst))
'() (set->list live))]
[(Instr 'pushq _) '()]
[(Instr _ (list s d)) (foldr (lambda (v lst)
(cond
[(not (equal? (get-final d) v)) (cons (list v (get-final d)) lst)]
[else lst]))
'() (set->list live))]
[(Instr _ (list d)) (foldr (lambda (v lst)
(cond
[(not (equal? (get-final d) v)) (cons (list v (get-final d)) lst)]
[else lst]))
'() (set->list live))]
[else '()]) edges))
'() live-after body))
(define (interference-graph live-after body)
(undirected-graph (set->list (list->set (find-edges live-after body)))))
(define (build-blocks body)
(map (lambda (block)
(match block
[(cons x (Block info e)) (cons x (Block (dict-set info 'conflicts (interference-graph (cdr (assoc 'live-after info)) e)) e))]))
body))
(define (build-interference p)
(match p
[(X86Program info body) (X86Program info (build-blocks body))]))
(define init-colors (hash 'rcx 0 'rdx 1 'rsi 2 'rdi 3 'r8 4 'r9 5 'r10 6 'rbx 7 'r12 8 'r13 9 'r14 10 'rax -1 'rsp -2 'rbp -3 'r11 -4 'r15 -5))
(define color-regs (hash 0 'rcx 1 'rdx 2 'rsi 3 'rdi 4 'r8 5 'r9 6 'r10 7 'rbx 8 'r12 9 'r13 10 'r14))
;; greedy
;; graph?, hash? -> [set?]
(define (compute-saturation-hash-count graph colors vars)
(define saturation-hash (make-hash))
(for-each (lambda (vertex)
(let ((saturation-set (list->set (map (lambda (neighbor) (hash-ref colors neighbor))
(filter (lambda (neighbor) (hash-has-key? colors neighbor))
(get-neighbors graph vertex))))))
(hash-set! saturation-hash vertex (set-count saturation-set))))
vars)
saturation-hash)
(define (key-with-highest-value hash-table)
(car (let ((key-value-pairs (hash-map hash-table (lambda (key value) (cons key value)))))
(foldl (lambda (pair current-best)
(if (or (not current-best) (> (cdr pair) (cdr current-best)))
pair
current-best))
#f
key-value-pairs))))
(define (remove-values small big)
(filter (lambda (x) (not (member x small))) big))
;; lowest color not in adjacent
(define (lowest-color colors adjacent)
(apply min (remove-values
(map (lambda (register) (hash-ref colors register))
(filter (lambda (x) (hash-has-key? colors x)) adjacent))
(build-list 100 values))))
(define (color-graph graph vars [colors init-colors])
(if (eq? (length vars) 0) colors
(let [(highest-satur-var (key-with-highest-value (compute-saturation-hash-count graph colors vars)))]
(color-graph graph (remove highest-satur-var vars)
(hash-set colors highest-satur-var (lowest-color colors (get-neighbors graph highest-satur-var))))))
)
;; take every variable
;; get color from color-graph
;; get color register (if in bounds)
;; else pass to assign stack
(define (assign-register list-vars color-graph)
(define var-to-register-hash (make-hash))
(for-each (lambda (var)
(let ((color (hash-ref color-graph var)))
(let ((register (hash-ref color-regs color)))
(hash-set! var-to-register-hash var (Reg register)))))
list-vars)
var-to-register-hash)
;; assign variables in list from info to a hash map with stack locations
(define (assign-stack list-vars var-register-hashmap)
(let ([var-hashmap var-register-hashmap])
(map (lambda (var id)
(hash-set! var-hashmap (car var) (Deref 'rbp (- (* 8 (+ 1 id)))))
) list-vars (range (length list-vars)))
var-hashmap))
;; take variables inside body and then replace them with their
;; corresponding entries in the hashmap
(define (replace-var body var-hashmap)
(map (lambda (inst)
(match inst
[(Instr instr (list (Var x))) (Instr instr (list (hash-ref var-hashmap x)))]
[(Instr instr (list (Var x) (Var y))) (Instr instr (list (hash-ref var-hashmap x) (hash-ref var-hashmap y)))]
[(Instr instr (list (Var x) atm)) (Instr instr (list (hash-ref var-hashmap x) atm))]
[(Instr instr (list atm (Var x))) (Instr instr (list atm (hash-ref var-hashmap x)))]
[else inst])) body))
;; assign-homes : x86var -> x86var
(define (allocate-registers p)
(match p
[(X86Program info (list (cons 'start (Block bl-info body))))
#:when (list? (assoc 'locals-types info))
(let ([list-vars (map car (cdr (assoc 'locals-types bl-info)))])
(X86Program info (list (cons 'start (Block bl-info (replace-var body (assign-register list-vars
(color-graph (cdr (assoc 'conflicts bl-info))
list-vars))))))))]
[else p]))
; (shrink (Program '() (If (Prim 'and (list (Bool #t) (Let 'x (Int 4) (Prim 'or (list (Var 'x) (Prim 'not (list (Bool #f)))))))) (Bool #t) (Bool #f))))
; (shrink (Program '() (If (Prim 'and `(,(Prim '- '((Int 5))) ,(Bool #f))) (Int 42) (Int 42))))
;; Define the compiler passes to be used by interp-tests and the grader
;; Note that your compiler file (the file that defines the passes)
;; must be named "compiler.rkt"
(define compiler-passes
`(
; ("uniquify" ,uniquify ,interp-Lvar ,type-check-Lvar)
; ("remove complex opera*" ,remove-complex-opera* ,interp-Lvar ,type-check-Lvar)
; ("explicate control" ,explicate-control, interp-Cvar ,type-check-Cvar)
; ("instruction selection" ,select-instructions ,interp-x86-0)
; ;("assign homes" ,assign-homes ,interp-x86-0)
; ("uncover live" ,uncover-live ,interp-x86-0)
; ("build interference" ,build-interference ,interp-x86-0)
; ("allocate registers" ,allocate-registers ,interp-x86-0)
; ("patch instructions" ,patch-instructions ,interp-x86-0)
; ("prelude-and-conclusion" ,prelude-and-conclusion ,interp-x86-0)
; ("shrink" ,shrink ,interp-Lif ,type-check-Lif)
; ("uniquify" ,uniquify ,interp-Lif ,type-check-Lif)
; ("remove complex opera*" ,remove-complex-opera* ,interp-Lif ,type-check-Lif)
; ("explicate control" ,explicate-control ,interp-Cif ,type-check-Cif)
; ("instruction select" ,select-instructions ,interp-pseudo-x86-1)
; ("shrink" ,shrink ,interp-Lwhile ,type-check-Lwhile)
; ("uniquify" ,uniquify ,interp-Lwhile ,type-check-Lwhile)
; ("uncover get!" ,uncover-get! ,interp-Lwhile ,type-check-Lwhile)
; ("remove complex opera*" ,remove-complex-opera* ,interp-Lwhile ,type-check-Lwhile)
; ("explicate control" ,explicate-control ,interp-Cwhile ,type-check-Cwhile)
; ("instruction select" ,select-instructions ,interp-pseudo-x86-1)
("shrink" ,shrink ,interp-Lvec ,type-check-Lvec)
("uniquify" ,uniquify ,interp-Lvec ,type-check-Lvec)
("uncover get!" ,uncover-get! ,interp-Lvec ,type-check-Lvec-has-type)
("expose allocation" ,expose-allocation ,interp-Lvec-prime ,type-check-Lvec)
("remove complex opera*" ,remove-complex-opera* ,interp-Lvec-prime ,type-check-Lvec)
("explicate control" ,explicate-control ,interp-Cvec ,type-check-Cvec)
))