-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathrizzo_3.20.R
40 lines (33 loc) · 1.04 KB
/
rizzo_3.20.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# ex 3.20
lambda = 3
shape = 6
scale = 2
size = 10000
eps = 1e-8
t = 10
# with probability 1-eps, n or less gamma distributed random variables are needed.
n = qpois(1-eps, lambda = lambda * t)
# sample from the gamma distribution. Not sure if it's ok to use the same sample every time.
# with this, the mean is of by about 10%.
# ys = c(rgamma(n = n, shape = shape, scale = scale))
# the interarrival times are exponentially distributed with rate lambda.
pp.exp = function (t0) {
# not sure how many Tn are needed :/
Tn = rexp(1000, lambda)
Sn = cumsum(Tn)
return(min(which(Sn > t0)) - 1)
}
# generate N(t) which follow the poisson process.
ns = sapply(1:size, function (i) pp.exp(t))
# generate X(t) as in the problem description.
xs = sapply(ns, function (n) {
ys = c(rgamma(n = n, shape = shape, scale = scale))
sum(ys[1:n])
})
# compare mean and variance of 'size' samples of X(t) for verification.
# sample:
(mean.s = mean(xs))
(var.s = var(xs))
# theoretical:
(mean.t = lambda * t * shape * scale)
(var.t = (shape + 1) * shape * scale^2)