-
Notifications
You must be signed in to change notification settings - Fork 10
/
eval.lua
77 lines (62 loc) · 1.74 KB
/
eval.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
require 'neuralconvo'
local tokenizer = require "tokenizer"
local list = require "pl.List"
local options = {}
if dataset == nil then
cmd = torch.CmdLine()
cmd:text('Options:')
cmd:option('--cuda', false, 'use CUDA. Training must be done on CUDA')
cmd:option('--opencl', false, 'use OpenCL. Training must be done on OpenCL')
cmd:option('--debug', false, 'show debug info')
cmd:text()
options = cmd:parse(arg)
-- Data
dataset = neuralconvo.DataSet()
-- Enabled CUDA
if options.cuda then
require 'cutorch'
require 'cunn'
elseif options.opencl then
require 'cltorch'
require 'clnn'
end
end
if model == nil then
print("-- Loading model")
model = torch.load("data/model.t7")
end
-- Word IDs to sentence
function pred2sent(wordIds, i)
local words = {}
i = i or 1
for _, wordId in ipairs(wordIds) do
local word = dataset.id2word[wordId[i]]
table.insert(words, word)
end
return tokenizer.join(words)
end
function printProbabilityTable(wordIds, probabilities, num)
print(string.rep("-", num * 22))
for p, wordId in ipairs(wordIds) do
local line = "| "
for i = 1, num do
local word = dataset.id2word[wordId[i]]
line = line .. string.format("%-10s(%4d%%)", word, probabilities[p][i] * 100) .. " | "
end
print(line)
end
print(string.rep("-", num * 22))
end
function say(text)
local wordIds = {}
for t, word in tokenizer.tokenize(text) do
local id = dataset.word2id[word:lower()] or dataset.unknownToken
table.insert(wordIds, id)
end
local input = torch.Tensor(list.reverse(wordIds))
local wordIds, probabilities = model:eval(input)
print(">> " .. pred2sent(wordIds))
if options.debug then
printProbabilityTable(wordIds, probabilities, 4)
end
end