forked from gnes-ai/hub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
68 lines (57 loc) · 2.79 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Tencent is pleased to support the open source community by making GNES available.
#
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
import torch
from gnes.encoder.base import BaseTextEncoder
from gnes.helper import batching
from pytorch_transformers import *
class PyTorchTransformers(BaseTextEncoder):
def __init__(self, model_name: str = 'bert-base-uncased', *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
def post_init(self):
# select the model, tokenizer & weight accordingly
model_class, tokenizer_class, pretrained_weights = \
{k[-1]: k for k in
[(BertModel, BertTokenizer, 'bert-base-uncased'),
(OpenAIGPTModel, OpenAIGPTTokenizer, 'openai-gpt'),
(GPT2Model, GPT2Tokenizer, 'gpt2'),
(TransfoXLModel, TransfoXLTokenizer, 'transfo-xl-wt103'),
(XLNetModel, XLNetTokenizer, 'xlnet-base-cased'),
(XLMModel, XLMTokenizer, 'xlm-mlm-enfr-1024'),
(RobertaModel, RobertaTokenizer, 'roberta-base')]}[self.model_name]
def load_model_tokenizer(x):
return model_class.from_pretrained(x), tokenizer_class.from_pretrained(x)
try:
self.model, self.tokenizer = load_model_tokenizer(self.work_dir)
except Exception:
self.logger.warning('cannot deserialize model/tokenizer from %s, will download from web' % self.work_dir)
self.model, self.tokenizer = load_model_tokenizer(pretrained_weights)
@batching
def encode(self, text: List[str], *args, **kwargs) -> np.ndarray:
# encoding and padding
ids = [self.tokenizer.encode(t) for t in text]
max_len = max(len(t) for t in ids)
ids = [t + [0] * (max_len - len(t)) for t in ids]
input_ids = torch.tensor(ids)
with torch.no_grad():
last_hidden_states = self.model(input_ids)[0] # Models outputs are now tuples
self.logger.info(last_hidden_states)
return np.array(last_hidden_states)
def __getstate__(self):
self.model.save_pretrained(self.work_dir)
self.tokenizer.save_pretrained(self.work_dir)
return super().__getstate__()