forked from UKPLab/sentence-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_nli_roberta.py
executable file
·85 lines (64 loc) · 3.22 KB
/
training_nli_roberta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
"""
The system RoBERTa trains on the SNLI + MultiNLI (AllNLI) dataset
with softmax loss function. At every 1000 training steps, the model is evaluated on the
STS benchmark dataset
"""
from torch.utils.data import DataLoader
import math
from sentence_transformers import models, losses
from sentence_transformers import SentencesDataset, LoggingHandler, SentenceTransformer
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import *
import logging
from datetime import datetime
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
# Read the dataset
batch_size = 16
nli_reader = NLIDataReader('datasets/AllNLI')
sts_reader = STSDataReader('datasets/stsbenchmark')
train_num_labels = nli_reader.get_num_labels()
model_save_path = 'output/training_nli_roberta-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
# Use BERT for mapping tokens to embeddings
word_embedding_model = models.RoBERTa('roberta-large')
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
# Convert the dataset to a DataLoader ready for training
logging.info("Read AllNLI train dataset")
train_data = SentencesDataset(nli_reader.get_examples('train.gz'), model=model)
train_dataloader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
train_loss = losses.SoftmaxLoss(model=model, sentence_embedding_dimension=model.get_sentence_embedding_dimension(), num_labels=train_num_labels)
logging.info("Read STSbenchmark dev dataset")
dev_data = SentencesDataset(examples=sts_reader.get_examples('sts-dev.csv'), model=model)
dev_dataloader = DataLoader(dev_data, shuffle=False, batch_size=batch_size)
evaluator = EmbeddingSimilarityEvaluator(dev_dataloader)
# Configure the training
num_epochs = 1
warmup_steps = math.ceil(len(train_data) * num_epochs / batch_size * 0.1) #10% of train data for warm-up
logging.info("Warmup-steps: {}".format(warmup_steps))
# Train the model
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path
)
##############################################################################
#
# Load the stored model and evaluate its performance on STS benchmark dataset
#
##############################################################################
model = SentenceTransformer(model_save_path)
test_data = SentencesDataset(examples=sts_reader.get_examples("sts-test.csv"), model=model)
test_dataloader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
evaluator = EmbeddingSimilarityEvaluator(test_dataloader)
model.evaluate(evaluator)