-
Notifications
You must be signed in to change notification settings - Fork 27
/
AGGRCOW.cpp
84 lines (79 loc) · 2.46 KB
/
AGGRCOW.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*My First Template :D*/
#include <bits/stdc++.h>
#include <limits.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> ii;
typedef vector<ii> vii;
typedef vector<int> vi;
#define MOD (ll)1000000007
#define pb push_back
#define EPS 1e-9
#define FOR(i,n) for(int i = 0;i < n; i++)
#define FORE(i,a,b) for(int i = a;i <= b; i++)
#define pi(a) printf("%d\n", a)
#define all(c) c.begin(), c.end()
#define tr(container, it) for(typeof(container.begin()) it = container.begin(); it != container.end(); it++)
#define gc getchar_unlocked
#define sdi(a, b) si(a);si(b)
#define io ios_base::sync_with_stdio(false);cin.tie(NULL);
#define endl '\n'
#define F first
#define S second
#define FILL(arr, val) memset(arr, val, sizeof(arr))
#define read(arr, n) for(int i = 0;i < n; i++)cin>>arr[i];
#define sp ' '
template <typename T> T gcd(T a, T b){return (b==0)?a:gcd(b,a%b);}
template <typename T> T lcm(T a, T b){return a*(b/gcd(a,b));}
template <typename T> T mod_exp(T b, T p, T m){T x = 1;while(p){if(p&1)x=(x*b)%m;b=(b*b)%m;p=p>>1;}return x;}
template <typename T> T invFermat(T a, T p){return mod_exp(a, p-2, p);}
template <typename T> T exp(T b, T p){T x = 1;while(p){if(p&1)x=(x*b);b=(b*b);p=p>>1;}return x;}
void si(int &x){
register int c = gc();
x = 0;
int neg = 0;
for(;((c<48 || c>57) && c != '-');c = gc());
if(c=='-') {neg=1;c=gc();}
for(;c>47 && c<58;c = gc()) {x = (x<<1) + (x<<3) + c - 48;}
if(neg) x=-x;
}
const int MAXN = 1e5+5;
int n, c;
int pos[MAXN];
int isPossible(int mid){
//place each cow at gap of mid and see if all cows can be placed
//i will go till n and if the number of cows on reaching n is found to be greater than or equal to c then this is possible answer
int positionOfLastCow = pos[0];
int count = 1;
for(int i = 1;i < n; i++){
int currentPositionOfCow = pos[i];
if(currentPositionOfCow-positionOfLastCow >= mid){
count++;
positionOfLastCow = currentPositionOfCow;
}
}
if(count >= c)
return 1;
else
return 0;
}
int main(){
io;
int t;
cin >> t;
while(t--){
cin >> n >> c;
read(pos, n);
sort(pos, pos+n);
int minn = 0, maxx = pos[n-1]-pos[0]+1;
while(maxx - minn > 1){
int mid = (maxx+minn)/2;
if(isPossible(mid)){
minn = mid;
}else
maxx = mid;
}
cout << minn << endl;
}
return 0;
}