forked from zoogzog/chexnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHeatmapGenerator.py
131 lines (96 loc) · 4.46 KB
/
HeatmapGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import numpy as np
import time
import sys
from PIL import Image
import re
import pydicom
import cv2
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
from DensenetModels import DenseNet121
from DensenetModels import DenseNet169
from DensenetModels import DenseNet201
from DatasetGenerator import dcm_to_png
#--------------------------------------------------------------------------------
#---- Class to generate heatmaps (CAM)
class HeatmapGenerator ():
#---- Initialize heatmap generator
#---- pathModel - path to the trained densenet model
#---- nnArchitecture - architecture name DENSE-NET121, DENSE-NET169, DENSE-NET201
#---- nnClassCount - class count, 14 for chxray-14
def __init__ (self, pathModel, nnArchitecture, nnClassCount, transCrop):
#---- Initialize the network
if nnArchitecture == 'DENSE-NET-121': model = DenseNet121(nnClassCount, True).cuda()
elif nnArchitecture == 'DENSE-NET-169': model = DenseNet169(nnClassCount, True).cuda()
elif nnArchitecture == 'DENSE-NET-201': model = DenseNet201(nnClassCount, True).cuda()
model = torch.nn.DataParallel(model).cuda()
print("=> loading checkpoint")
modelCheckpoint = torch.load(pathModel)
# https://github.com/KaiyangZhou/deep-person-reid/issues/23
pattern = re.compile(
r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')
state_dict = modelCheckpoint['state_dict']
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
model.load_state_dict(state_dict)
print("=> loaded checkpoint")
self.model = model.module.densenet121.features
self.model.eval()
#---- Initialize the weights
self.weights = list(self.model.parameters())[-2]
#---- Initialize the image transform - resize + normalize
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
transformList = []
transformList.append(transforms.Resize(transCrop))
transformList.append(transforms.ToTensor())
transformList.append(normalize)
self.transformSequence = transforms.Compose(transformList)
#--------------------------------------------------------------------------------
def generate (self, pathImageFile, transCrop):
#---- Load image, transform, convert
if pathImageFile[-4:]=='.dcm':
dcmimg = pydicom.dcmread(pathImageFile)
imageData = dcm_to_png(dcmimg).convert('RGB')
else:
imageData = Image.open(pathImageFile).convert('RGB')
imageData = self.transformSequence(imageData)
imageData = imageData.unsqueeze_(0)
input = torch.autograd.Variable(imageData)
self.model.cuda()
output = self.model(input.cuda())
#---- Generate heatmap
heatmap = None
for i in range (0, len(self.weights)):
map = output[0,i,:,:]
if i == 0: heatmap = self.weights[i] * map
else: heatmap += self.weights[i] * map
#---- Blend original and heatmap
npHeatmap = heatmap.cpu().data.numpy()
if pathImageFile[-4:]=='.dcm':
imgOriginal = pydicom.dcmread(pathImageFile).pixel_array
else:
imgOriginal = cv2.imread(pathImageFile, 1)
imgOriginal = cv2.resize(imgOriginal, (transCrop, transCrop))
cam = npHeatmap / np.max(npHeatmap)
cam = cv2.resize(cam, (transCrop, transCrop))
# heatmap = cv2.applyColorMap(np.uint8(255*cam), cv2.COLORMAP_JET)
# img = heatmap #* 0.5 + imgOriginal
# cv2.imwrite(pathOutputFile, img)
return cam
#--------------------------------------------------------------------------------
# pathInputImage = 'test/00009285_000.png'
# pathOutputImage = 'test/heatmap.png'
# pathModel = 'models/m-25012018-123527.pth.tar'
# nnArchitecture = 'DENSE-NET-121'
# nnClassCount = 14
# transCrop = 224
# h = HeatmapGenerator(pathModel, nnArchitecture, nnClassCount, transCrop)
# h.generate(pathInputImage, pathOutputImage, transCrop)