-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtree.py
325 lines (192 loc) · 8.97 KB
/
tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
from df_help import *
class Tree:
"""
Class for training and building decision trees.
"""
def __init__(self, forest_obj, rho, depth=None):
self.forest_obj = forest_obj
self.rho = rho
self.node_class = forest_obj.node_class
self.s_0 = len(forest_obj.data)
self.leaf_nodes = []
self.entropy_gain_evol = []
self.explore_depth = depth if depth else 0
self.root_node = self.build_tree()
self.Zt = None
self.tree_nodes_depth = self.extract_levels(self.root_node)
self.tree_nodes_domain = self.extract_domain_splits(self.root_node)
if not depth:
self.Zt = self.norm_tree()
def check_norm(self):
dist_vals = []
deltas = []
for v in self.forest_obj.grid:
deltas.append( v[1]-v[0] )
for i, x in enumerate(self.forest_obj.grid[0]):
dist_vals.append([])
for j, y in enumerate(self.forest_obj.grid[1]):
dist_vals[i].append(self.output(np.array([x, y])))
integral = integrate_2d(deltas=deltas, func=dist_vals)
return integral
def norm_tree(self):
Zt = 0
for l in self.leaf_nodes:
pi_l = l.s_l / self.s_0
integral = l.check_norm(self.forest_obj.grid)
Zt += pi_l * integral
return Zt
def output(self, x):
current_node = self.root_node
while not current_node.leaf:
if current_node.go_right(x):
current_node = current_node.right
else:
current_node = current_node.left
pi_l = current_node.s_l / self.s_0
return (pi_l/self.Zt)*current_node.leaf_output(x)
def _compute_det_lamb(self, S):
if S.shape[0] > 2:
return self.forest_obj.entropy_func(S)
return 1e5
def entropy_gain(self, parent_entropy, S, ind, axis):
"""
Compute entropy gain given data set, split index and axis of application
"""
S_right = S[S[:,axis]>=self.forest_obj.grid[axis][ind]]
S_left = S[S[:,axis]<self.forest_obj.grid[axis][ind]]
right_entropy = self._compute_det_lamb(S_right)*len(S_right)/len(S)
left_entropy = self._compute_det_lamb(S_left)*len(S_left)/len(S)
return parent_entropy - (right_entropy + left_entropy), len(S_left), len(S_right)
def build_tree(self):
quad = [[0,len(self.forest_obj.grid[0])-1]]*2
root_node = self.split_node(quad=quad, depth=0)
return root_node
def _get_local_data(self, quad):
right = self.forest_obj.data[:,0] >= self.forest_obj.grid[0][quad[0][0]]
left = self.forest_obj.data[:,0] < self.forest_obj.grid[0][quad[0][1]]
top = self.forest_obj.data[:,1] >= self.forest_obj.grid[1][quad[1][0]]
bottom = self.forest_obj.data[:,1] < self.forest_obj.grid[1][quad[1][1]]
return self.forest_obj.data[(right)&(left)&(top)&(bottom)]
def _get_search_space(self, quad):
# d axis ranges inside branch domain
x_edge = range(quad[0][0], quad[0][1]+1)
y_edge = range(quad[1][0], quad[1][1]+1)
# Apply randomness rho factor to limit parameter space search
edge = np.array([(z, 0) for z in x_edge] + [(z, 1) for z in y_edge])
size = len(edge)
return edge[np.random.choice(size, size=int(size*self.rho), replace=False)]
def _find_opt_cut(self, ind_array, local_data):
max_entropy = 0
opt_ind = -1
opt_axis = -1
parent_entropy = self._compute_det_lamb(local_data)
for ind, axis in ind_array:
entropy, left_size, right_size = self.entropy_gain(parent_entropy, local_data, ind, axis)
if entropy > max_entropy and left_size > 2 and right_size > 2:
max_entropy = entropy
opt_ind, opt_axis = (ind, axis)
return max_entropy, opt_ind, opt_axis
def _get_new_quad(self, old_quad, axis, opt_ind):
"""
quad: Return 2*d - indexes that delimit branch domain.
Splits branch domain based on optimal index and axis of application.
"""
opt_quad_left = old_quad.copy()
opt_quad_right = old_quad.copy()
opt_quad_left[axis] = [old_quad[axis][0], opt_ind]
opt_quad_right[axis] = [opt_ind, old_quad[axis][1]]
return opt_quad_left, opt_quad_right
def split_node(self, quad, depth):
"""
Recursively split nodes until stop condition is reached
"""
# Restrict data to in branch domain
local_data = self._get_local_data(quad)
# Restrict search space for optimal cut
ind_array = self._get_search_space(quad)
# Find split with maxiumum entropy gain
max_entropy, opt_ind, opt_axis = self._find_opt_cut(ind_array, local_data)
tune_threshold_cond = depth == self.explore_depth
stop_condition = tune_threshold_cond if self.explore_depth else (self.forest_obj.opt_entropy > max_entropy)
# Stop Condition
if stop_condition or opt_ind == -1:
leaf_node = self.node_class(data=local_data, quad=quad, depth=depth, leaf=True)
self.leaf_nodes.append( leaf_node )
return leaf_node
self.entropy_gain_evol.append( [depth, max_entropy] )
# Split node's quad
node = self.node_class(data=local_data, quad=quad, depth=depth)
node.go_right = node.add_split(self.forest_obj.grid[opt_axis][opt_ind], opt_axis)
opt_quad_left, opt_quad_right = self._get_new_quad(quad, opt_axis, opt_ind)
node.left = self.split_node(quad=opt_quad_left, depth=depth+1)
node.right = self.split_node(quad=opt_quad_right, depth=depth+1)
return node
def extract_levels(self, node):
if node.left:
levels_dic_left = self.extract_levels(node.left)
levels_dic_right = self.extract_levels(node.right)
for k, v in levels_dic_right.items():
if k in levels_dic_left:
levels_dic_left[k] += v
else:
levels_dic_left[k] = v
levels_dic_left[node.depth] = [node]
return levels_dic_left
else:
return {node.depth : [node]}
def extract_domain_splits(self, node):
dic = {}
count = 0
dic[count] = [node]
while not all([n.left is None for n in dic[count]]):
nodes = dic[count]
count += 1
dic[count] = []
for k, n in enumerate(nodes):
if n.left:
dic[count].append( n.left )
dic[count].append( n.right )
else:
dic[count].append( n )
return dic
def domain_splits_plots(self, subpath=''):
path = os.getcwd() + '/evol/' + subpath
mkdir_p(path)
evol = pd.DataFrame(self.entropy_gain_evol).groupby(0)[1].mean()
evol = np.array(list(zip(evol.index, evol)))
for d in np.arange(len(self.tree_nodes_domain)):
nodes = self.tree_nodes_domain[d]
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(211)
ax0.plot(*zip(*evol[:d]), alpha=.8, color='k', ls='-', lw=2.)
ax0.set_title('Entropy gain vs. Depth')
plt.xlim(np.min(evol[:,0]), np.max(evol[:,0]))
plt.ylim(np.min(evol[:,1]), np.max(evol[:,1]))
ax = fig.add_subplot(212)
for n in nodes:
#n.check_norm(self.grid.axis)
[[i1, i2], [j1, j2]] = n.quad
x1, x2 = self.forest_obj.grid[0][i1], self.forest_obj.grid[0][i2]
y1, y2 = self.forest_obj.grid[1][j1], self.forest_obj.grid[1][j2]
ax.fill_between([x1,x2], y1, y2, alpha=.7)
pd.DataFrame(self.forest_obj.data, columns=['x', 'y']).plot(ax=ax, x='x', y='y', kind='scatter', lw=0, alpha=.6, s=20, c='k')
plt.savefig(path + 'branches_depth%s.png'%d, format='png')
plt.close()
def tree_leaf_plots(self, fname='data.png'):
path = os.getcwd() + '/plots/'
mkdir_p(path)
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111)
for n in self.leaf_nodes:
#n.check_norm(self.grid.axis)
[[i1, i2], [j1, j2]] = n.quad
x1, x2 = self.forest_obj.grid[0][i1], self.forest_obj.grid[0][i2]
y1, y2 = self.forest_obj.grid[1][j1], self.forest_obj.grid[1][j2]
ax.fill_between([x1,x2], y1, y2, alpha=.7)
pd.DataFrame(self.forest_obj.data, columns=['x', 'y']).plot(ax=ax, x='x', y='y', kind='scatter', lw=0, alpha=.6, s=20, c='k')
plt.savefig(path + fname, format='png')
plt.close()