-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
77 lines (55 loc) · 1.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
main script for overall model training
"""
import torch
from torch.utils.data import DataLoader
from trainer import DeepUNetTrainer
from utils import get_default_argparser
from preprocess import PairedDataset
from torchvision import transforms
TRIANER_MAP = {
'deepunet': DeepUNetTrainer,
}
COLORGRAM_ENABLE = ('deepunet')
def main(args):
# device setting
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
train_transform = transforms.Compose([
transforms.ToTensor(),
])
val_transform = transforms.Compose([
transforms.ToTensor(),
])
# assign data loader
train_data = PairedDataset(
transform=train_transform,
color_histogram=(args.model in COLORGRAM_ENABLE),
)
train_loader = DataLoader(
train_data,
shuffle=True,
batch_size=args.batch_size,
)
val_data = PairedDataset(
transform=val_transform,
mode='val',
color_histogram=(args.model in COLORGRAM_ENABLE),
)
trainer = TRIANER_MAP.get(args.model, None)
if trainer is None:
raise KeyError('Non supporting model')
trainer = trainer(args, train_loader, device)
if args.train:
last_iter = -1
for epoch in range(args.last_epoch + 1,
args.last_epoch + 1 + args.num_epochs):
last_iter = trainer.train(last_iter)
if args.save_every > 0 and epoch % args.save_every == 0:
trainer.save_model(args.model, epoch)
trainer.validate(val_data, epoch, args.sample)
print('Epoch %d finished' % epoch)
else:
trainer.validate(val_data, 1, args.sample)
if __name__ == "__main__":
parser = get_default_argparser()
main(parser.parse_args())