-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_test.py
187 lines (156 loc) · 7.61 KB
/
model_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import json
import os.path
from peft import PeftModel
from tqdm import tqdm
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import torch
import pandas as pd
import openai
import random
import time
def load_model(pretrain_model_path, lora_path):
tokenizer = AutoTokenizer.from_pretrained(pretrain_model_path, padding_side='left', trust_remote_code=True, revision="")
tokenizer.pad_token_id = 0
model = AutoModelForCausalLM.from_pretrained(pretrain_model_path,
device_map='auto',
torch_dtype=torch.bfloat16,
trust_remote_code=True)
model = PeftModel.from_pretrained(model, lora_path)
# model = model.merge_and_unload()
model = model.eval()
# model = model.cuda()
return tokenizer, model
def predict_samples(model, tokenizer, queries):
"""
预测一个query
:return:
"""
texts = [f"任务: 纠错文本\n输入: {query}\n输出: " for query in queries]
inputs = tokenizer(texts, return_tensors="pt", padding=True)
inputs = inputs.to(model.device)
max_seq_len = inputs['input_ids'].shape[1]
outputs = model.generate(
**inputs,
do_sample=False,
max_new_tokens=1024,
num_beams=1
)
outputs_pre = outputs[:, max_seq_len:]
outputs_pre = tokenizer.batch_decode(outputs_pre, skip_special_tokens=True)
outputs_ids = outputs
outputs_token = [tokenizer.decode(d) for d in outputs_ids[0]]
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
outputs_tokenizer_ids = tokenizer(outputs[0])['input_ids']
outputs_tokenizer_token = [tokenizer.decode(d) for d in outputs_tokenizer_ids]
flag = bool(outputs_ids[0].tolist() == outputs_tokenizer_ids) or bool(outputs_ids[0].tolist()[:-1] == outputs_tokenizer_ids)
return outputs_pre[0], outputs_ids[0].tolist(), outputs_token, outputs_tokenizer_ids, outputs_tokenizer_token, flag
def batch_predict_json(pretrained_model_path, lora_path, args, name_list):
"""
批量预测
:return:
"""
for DATASET_NAME in name_list:
print("======",DATASET_NAME,"=======")
if os.path.exists(lora_path+f'/{DATASET_NAME}_{args.mode}.json'): continue
tokenizer, model = load_model(pretrained_model_path, lora_path)
data = json.load(open(f'./dataset/test_data/{DATASET_NAME}.json', 'rt', encoding='utf-8'))
data_with_predict = []
for item in tqdm(data):
item['predict'], item['outputs_ids'], item['outputs_tokens'], item['outputs_tokenizer_ids'], item['outputs_tokenizer_token'], item['flag'] = predict_samples(model, tokenizer, [item['src']])
print(f"任务: 纠错文本\n输入: {item['src']}\n输出: ")
print('-' * 20)
print(item['predict'])
print('=' * 20)
data_with_predict.append(item)
json.dump(data_with_predict, open(os.path.join(lora_path, f'{DATASET_NAME}_{args.mode}.json'), 'wt', encoding='utf-8'),
ensure_ascii=False, indent=4)
json.dump(data_with_predict, open(os.path.join(args.base_dir, f'{DATASET_NAME}_{args.mode}.json'), 'wt', encoding='utf-8'),
ensure_ascii=False, indent=4)
def batch_predict_json_domain(pretrained_model_path, lora_path, args):
"""
批量预测
:return:
"""
if os.path.exists(lora_path+f'/{args.domain}_{args.mode}.json'): return
tokenizer, model = load_model(pretrained_model_path, lora_path)
data = json.load(open(f'./dataset/test_data/{args.domain}.json', 'rt', encoding='utf-8'))
data_with_predict = []
for item in tqdm(data):
item['predict'], item['outputs_ids'], item['outputs_tokens'], item['outputs_tokenizer_ids'], item['outputs_tokenizer_token'], item['flag'] = predict_samples(model, tokenizer, [item['src']])
print(f"任务: 纠错文本\n输入: {item['src']}\n输出: ")
print('-' * 20)
print(item['predict'])
print('=' * 20)
data_with_predict.append(item)
json.dump(data_with_predict, open(os.path.join(lora_path, f'{args.domain}_{args.mode}.json'), 'wt', encoding='utf-8'),
ensure_ascii=False, indent=4)
json.dump(data_with_predict, open(os.path.join(args.base_dir, f'{args.domain}_{args.mode}.json'), 'wt', encoding='utf-8'),
ensure_ascii=False, indent=4)
def interactive_predict(args):
"""
交互式体验
:return:
"""
while True:
try:
input_text = input('I:')
tokenizer, model = load_model(args.pretrained_model_path, args.lora_path)
output_text,_,_,_,_,_ = predict_samples(model, tokenizer, [input_text])
print('O:', output_text)
except KeyboardInterrupt:
return
def make_prompt(args):
"""
构造few-shot prompts
:return:
"""
dir = args.dataset_dir + "train_data/cscd_train.json"
true_num, false_num = 5, 5
prompts = {}
with open(dir, "r", encoding="utf-8") as fh:
Data = json.load(fh)
length_dict = {"cscd": 5000}
for k in length_dict.keys():
for i in range(length_dict[k]):
prompt = "纠正句子中的错别字,并返回纠正后的句子。\n\n"
t_n, f_n = 0 ,0
index_list = []
flag_true, flag_false = False, False
while True:
if flag_false and flag_true: break
randint = random.randint(0, len(Data)-1)
if Data[randint]['src'] == Data[randint]['tgt'] and not flag_true and randint not in index_list:
t_n += 1
index_list.append(randint)
if Data[randint]['src'] != Data[randint]['tgt'] and not flag_false and randint not in index_list:
f_n += 1
index_list.append(randint)
if t_n == true_num: flag_true = True
if f_n == false_num: flag_false = True
assert len(index_list) == true_num + false_num, len(index_list)
random.shuffle(index_list)
for index in index_list:
if m =='new': prompt += " ".join(list(Data[index]['src'])) + "=>" + " ".join(list(Data[index]['tgt'])) + '\n'
if m =='old': prompt += Data[index]['src'] + "=>" + Data[index]['tgt'] + '\n'
prompts[i] = prompt
json.dump([prompts], open((args.dataset_dir+f'prompt/prompt_{k}_{m}.json'), 'wt', encoding='utf-8'),
ensure_ascii=False, indent=4)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_path", type=str, default="./models/qwen1.5_14b_filter_model/")
parser.add_argument("--lora_path", type=str, default="./checkpoint/old_tokenizer_qwen15_1.8b_wang_cscd/csc-1.8b-old-tokenizer-wang-cscd/checkpoint-2120")
parser.add_argument("--dataset_dir", type=str, default='./dataset/')
parser.add_argument("--mode", type=str, default='old')
parser.add_argument("--base_dir", type=str, default="/predicts/prediction_qwen_14b/all_result/")
parser.add_argument("--domain", type=str, default="")
args = parser.parse_args()
interactive_predict(args)
name_list = ["cscd"]
batch_predict_json(args.pretrained_model_path, args.lora_path, args, name_list)
args_list = ["car",'cot','enc','gam','mec','new','nov']
for arg in args_list:
args.domain = arg
print("===", args.domain, "===")
batch_predict_json_domain(args.pretrained_model_path, args.lora_path, args)