-
Notifications
You must be signed in to change notification settings - Fork 142
/
Copy pathparallel_holdem_calc.py
182 lines (171 loc) · 9.05 KB
/
parallel_holdem_calc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import multiprocessing
import time
import holdem_argparser
import holdem_functions
def main():
hole_cards, num, exact, board, file_name = holdem_argparser.parse_args()
run(hole_cards, num, exact, board, file_name, True)
def calculate(board, exact, num, input_file, hole_cards, verbose):
args = holdem_argparser.LibArgs(board, exact, num, input_file, hole_cards)
hole_cards, n, e, board, filename = holdem_argparser.parse_lib_args(args)
return run(hole_cards, n, e, board, filename, verbose)
def run(hole_cards, num, exact, board, file_name, verbose):
if file_name:
input_file = open(file_name, 'r')
for line in input_file:
if line is not None and len(line.strip()) == 0:
continue
hole_cards, board = holdem_argparser.parse_file_args(line)
deck = holdem_functions.generate_deck(hole_cards, board)
run_simulation(hole_cards, num, exact, board, deck, verbose)
print "-----------------------------------"
input_file.close()
else:
deck = holdem_functions.generate_deck(hole_cards, board)
return run_simulation(hole_cards, num, exact, board, deck, verbose)
def run_simulation(hole_cards, num, exact, given_board, deck, verbose):
num_players = len(hole_cards)
# Choose whether we're running a Monte Carlo or exhaustive simulation
board_length = 0 if given_board is None else len(given_board)
# Create data structures to manage multiple processes:
# 1) winner_list: number of times each player wins a hand
# 2) result_histograms: a list for each player that shows the number of
# times each type of poker hand (e.g. flush, straight) was gotten
num_processes = multiprocessing.cpu_count()
num_poker_hands = len(holdem_functions.hand_rankings)
num_histograms = num_processes * num_players * num_poker_hands
winner_list = multiprocessing.Array('i', num_processes * (num_players + 1))
result_histograms = multiprocessing.Array('i', num_histograms)
# When a board is given, exact calculation is much faster than Monte Carlo
# simulation, so default to exact if a board is given
if exact or given_board is not None:
generate_boards = holdem_functions.generate_exhaustive_boards
else:
generate_boards = holdem_functions.generate_random_boards
if (None, None) in hole_cards:
hole_cards_list = list(hole_cards)
unknown_index = hole_cards.index((None, None))
deck_list = list(deck)
pool = multiprocessing.Pool(processes=num_processes,
initializer=unknown_simulation_init,
initargs=(hole_cards_list, unknown_index,
deck_list, generate_boards,
num, board_length, given_board,
winner_list, result_histograms))
pool.map(unknown_simulation, holdem_functions.generate_hole_cards(deck))
else:
find_winner(generate_boards, deck, hole_cards, num, board_length,
given_board, winner_list, result_histograms)
# Go through each parallel data structure and aggregate results
combined_winner_list, combined_histograms = [0] * (num_players + 1), []
for _ in xrange(num_players):
combined_histograms.append([0] * len(holdem_functions.hand_rankings))
for index, element in enumerate(winner_list):
combined_winner_list[index % (num_players + 1)] += element
for index, element in enumerate(result_histograms):
combined_histograms[(index / num_poker_hands) % num_players][
(index % num_poker_hands)] += element
if verbose:
holdem_functions.print_results(hole_cards, combined_winner_list,
combined_histograms)
return holdem_functions.find_winning_percentage(combined_winner_list)
def unknown_simulation_init(hole_cards_list, unknown_index, deck_list,
generate_boards, num, board_length, given_board,
combined_winner_list, combined_result_histograms):
unknown_simulation.hole_cards_list = hole_cards_list
unknown_simulation.unknown_index = unknown_index
unknown_simulation.deck = deck_list
unknown_simulation.generate_boards = generate_boards
unknown_simulation.num = num
unknown_simulation.board_length = board_length
unknown_simulation.given_board = given_board
unknown_simulation.combined_winner_list = combined_winner_list
unknown_simulation.combined_result_histograms = combined_result_histograms
def unknown_simulation(new_hole_cards):
# Extract parameters
hole_cards_list = unknown_simulation.hole_cards_list
unknown_index = unknown_simulation.unknown_index
deck = unknown_simulation.deck[:]
generate_boards = unknown_simulation.generate_boards
num = unknown_simulation.num
board_length = unknown_simulation.board_length
given_board = unknown_simulation.given_board
combined_winner_list = unknown_simulation.combined_winner_list
combined_result_histograms = unknown_simulation.combined_result_histograms
# Set simulation variables
num_players = len(hole_cards_list)
result_histograms, winner_list = [], [0] * (num_players + 1)
for _ in xrange(num_players):
result_histograms.append([0] * len(holdem_functions.hand_rankings))
hole_cards_list[unknown_index] = new_hole_cards
deck.remove(new_hole_cards[0])
deck.remove(new_hole_cards[1])
# Find winner
holdem_functions.find_winner(generate_boards, deck, tuple(hole_cards_list),
num, board_length, given_board, winner_list,
result_histograms)
# Write results to parallel data structure for future tabulation
proc_name = multiprocessing.current_process().name
proc_id = int(proc_name.split("-")[-1]) % multiprocessing.cpu_count()
for index, result in enumerate(winner_list):
combined_winner_list[proc_id * (num_players + 1) + index] += result
for histogram_index, histogram in enumerate(result_histograms):
for index, result in enumerate(histogram):
combined_result_histograms[len(holdem_functions.hand_rankings) *
(proc_id * num_players + histogram_index)
+ index] += result
def find_winner(generate_boards, deck, hole_cards, num, board_length,
given_board, winner_list, result_histograms):
num_processes = multiprocessing.cpu_count()
# Create threadpool and use it to perform hand detection over all boards
pool = multiprocessing.Pool(processes=num_processes,
initializer=simulation_init,
initargs=(given_board, hole_cards, winner_list,
result_histograms))
pool.map(simulation, generate_boards(deck, num, board_length))
# Initialize shared variables for simulation
def simulation_init(given_board, hole_cards, winner_list, result_histograms):
simulation.given_board = given_board
simulation.hole_cards = hole_cards
simulation.winner_list = winner_list
simulation.result_histograms = result_histograms
# Separated function for each thread to execute while running
def simulation(remaining_board):
# Extract variables shared through inheritance
given_board, hole_cards = simulation.given_board, simulation.hole_cards
winner_list = simulation.winner_list
result_histograms = simulation.result_histograms
# Generate a new board
if given_board:
board = given_board[:]
board.extend(remaining_board)
else:
board = remaining_board
num_players = len(hole_cards)
# Extract process id from the name of the current process
# Names are of the format: PoolWorker-1 - PoolWorker-n
proc_name = multiprocessing.current_process().name
proc_id = int(proc_name.split("-")[-1]) % multiprocessing.cpu_count()
# Create results data structure which tracks results of comparisons
result_list = []
for _ in xrange(num_players):
result_list.append([])
# Find the best possible poker hand given the created board and the
# hole cards and save them in the results data structures
suit_histogram, histogram, max_suit = (
holdem_functions.preprocess_board(board))
for index, hole_card in enumerate(hole_cards):
result_list[index] = (
holdem_functions.detect_hand(hole_card, board, suit_histogram,
histogram, max_suit))
# Find the winner of the hand and tabulate results
winner_index = holdem_functions.compare_hands(result_list)
winner_list[proc_id * (num_players + 1) + winner_index] += 1
# Increment what hand each player made
for index, result in enumerate(result_list):
result_histograms[len(holdem_functions.hand_rankings) *
(proc_id * num_players + index) + result[0]] += 1
if __name__ == '__main__':
start = time.time()
main()
print "\nTime elapsed(seconds): ", time.time() - start