-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathlosses.py
83 lines (68 loc) · 2.85 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# ---------------------------------------------------------------
# CleanNet implementation based on https://arxiv.org/abs/1711.07131.
# "CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise"
# Kuang-Huei Lee, Xiaodong He, Lei Zhang, Linjun Yang
#
# Writen by Kuang-Huei Lee, 2018
# Licensed under the MSR-LA Full Rights License [see license.txt]
# ---------------------------------------------------------------
"""Define losses"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def reconst_loss(x, r_x):
"""autoencoder reconstruction loss
Args:
x: feature vector
r_x: reconstructed feature vector
Returns:
reconstruction loss
"""
with tf.variable_scope("reconst_loss"):
return tf.reduce_sum(tf.square(tf.subtract(x, r_x)), axis=1)
def cos_sim_loss(vlabel, cos_sim, neg_weight, margin=0.1):
"""Cosine similarity loss
Args:
vlabel: verification label
cos_sim: predicted cosine similarity
neg_weight: negative sample weight
margin: cosine similarity margin
Returns:
cosine similarity loss
"""
with tf.variable_scope("cos_sim_loss"):
return tf.add(tf.multiply(vlabel, 1.0 - cos_sim), \
neg_weight * (tf.multiply(1.0 - vlabel, tf.maximum(tf.constant(0.0), cos_sim - margin))))
def unsup_cos_sim_loss(cos_sim, neg_weight, margin=0.1):
"""Unsupervised cosine similarity loss
Args:
cos_sim: predicted cosine similarity
neg_weight: negative sample weight
margin: cosine similarity margin
Returns:
unsupervised cosine similarity loss
"""
with tf.variable_scope("unsup_cos_sim_loss"):
sudo_vlabel = tf.cast(tf.greater_equal(cos_sim, 0.1), dtype=tf.float32)
return cos_sim_loss(sudo_vlabel, cos_sim, neg_weight)
def total_loss(vlabel, cos_sim, phi_s, v_q, phi_q, v_qr, vflag, neg_weight, beta=0.1, gamma=0.1):
"""Total loss
Args:
vlabel: verification label
cos_sim: predicted cosine similarity
phi_s: reference set vector
v_q: query image feature
phi_q: query vector
v_qr: reconstructed v_q
vflag: verification flags indicating a sample is for supervised(1) or unsupervised(0) training
neg_weight: negative sample weight
beta: weight on reconstruction loss
gamma: weight on unsupervised cosine similarity loss
Returns:
supervised cosine similarity loss + unsupervised cosine similarity loss + reconstruction loss
"""
with tf.variable_scope("total_loss"):
return tf.multiply(cos_sim_loss(vlabel, cos_sim, neg_weight), vflag) + \
beta *reconst_loss(v_q, v_qr) + \
gamma * tf.multiply(unsup_cos_sim_loss(cos_sim, neg_weight), 1.0-vflag)