-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.py
190 lines (148 loc) · 7.42 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
""" Module to made prediction for test set from a given model.
"""
import torch
import numpy as np
import pandas as pd
from pathlib import Path
from pickle import load
from tqdm import tqdm
from train_model import prepare_data_and_target, calc_pred
from src.data_utils import get_test_dataloader, get_test_dataset
class ModelPredictor:
def __init__(self, dir_output, path_model, leave_dropout_on=False, dir_pred=None,
dataset_folder=Path("C:/Users/abcd2/Datasets/2022_icml_lens_sim/geoff_1200")):
self.dir_output = dir_output
self.path_model = path_model
self.leave_dropout_on = leave_dropout_on
self.dataset_folder = dataset_folder
if dir_pred is not None:
self.dir_pred = dir_pred
else:
self.dir_pred = self.dir_output
path_config = Path(f"{dir_output}/CONFIG.npy")
self.CONFIG = np.load(path_config, allow_pickle=True).item()
self.CONFIG["dataset_folder"] = self.dataset_folder
self.CONFIG["batch_size"] = 10
print(self.CONFIG)
test_dataset = get_test_dataset(self.CONFIG)
self.test_loader = get_test_dataloader(self.CONFIG["batch_size"], test_dataset)
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Use device = {self.device}\n")
self.model = torch.load(path_model)
self.model.to(self.device)
if leave_dropout_on:
self.model.train()
else:
self.model.eval()
self.targets_list = self.CONFIG["target_keys_weights"].keys()
def execute(self, saved_file_suffix=None):
print("Start predicting\n")
pred_dict = {k: [] for k in self.targets_list}
truth_dict = {k: [] for k in self.targets_list}
sigma_dict = {k: [] for k in self.targets_list}
for data, target_dict in tqdm(self.test_loader, total=len(self.test_loader)):
data, _ = prepare_data_and_target(data, target_dict, self.device)
pred_mu, pred_logvar = calc_pred(self.model, data)
for ikey, key in enumerate(target_dict):
if key in self.targets_list:
_truth = target_dict[key][:, 0].detach().tolist()
_pred_mu= pred_mu[:, ikey].detach().tolist()
_pred_logvar = pred_logvar[:,ikey].detach().tolist()
_sigma = np.sqrt(np.exp(_pred_logvar))
truth_dict[key].extend(_truth)
pred_dict[key].extend(_pred_mu)
sigma_dict[key].extend(_sigma)
for key in self.targets_list:
truth_dict[key] = np.array(truth_dict[key])
pred_dict[key] = np.array(pred_dict[key])
sigma_dict[key] = np.array(sigma_dict[key])
df_truth = pd.DataFrame.from_dict(truth_dict).add_suffix('____truth')
df_pred = pd.DataFrame.from_dict(pred_dict).add_suffix('____pred')
df_sigma = pd.DataFrame.from_dict(sigma_dict).add_suffix('____sigma')
self.df_result = pd.concat([df_truth, df_pred, df_sigma], axis=1)
# # not neccessary
# if self.leave_dropout_on:
# if saved_file_suffix is not None:
# path_pred_scaled = Path(f"{self.dir_pred}/pred_scaled_dp_{saved_file_suffix}.csv")
# else:
# path_pred_scaled = Path(f"{self.dir_pred}/pred_scaled_dp.csv")
# else:
# path_pred_scaled = Path(f"{self.dir_pred}/pred_scaled.csv")
# self.df_result.to_csv(path_pred_scaled, index=False)
# print(f"Saved pred_scaled.csv to {path_pred_scaled} \n")
def scale_back(self, saved_file_suffix=None, path_scaler=Path("C:/Users/abcd2/Datasets/2022_icml_lens_sim/geoff_30000/scaler.pkl")):
print("Start scaling pred_scaled.csv back\n")
scaler = load(open(path_scaler, 'rb'))
df_resumed = {}
for suffix in ["truth", "pred", "sigma"]:
for target in self.targets_list:
key = f"{target}____{suffix}"
mask = scaler.feature_names_in_ == target
mu = scaler.mean_[mask][0]
std = scaler.scale_[mask][0]
if suffix == "sigma":
df_resumed[key] = self.df_result[key] * std
else:
df_resumed[key] = mu + self.df_result[key] * std
self.df_resumed = pd.DataFrame(df_resumed)
if self.leave_dropout_on:
if saved_file_suffix is not None:
path_pred = Path(f"{self.dir_pred}/pred_dp_{saved_file_suffix}.csv")
else:
path_pred = Path(f"{self.dir_pred}/pred_dp.csv")
else:
path_pred = Path(f"{self.dir_pred}/pred.csv")
self.df_resumed.to_csv(path_pred, index=False)
print(f"Scaled back and saved pred.csv to {path_pred} \n")
# # sanity check
# df_meta = pd.read_csv(f"{self.dataset_folder}/metadata.csv")
# for target in self.targets_list:
# key = f"{target}____truth"
# print(np.mean((self.df_resumed[key] - df_meta[target])**2))
class BayesianInference:
def __init__(self, dir_pred, dir_output):
self.dir_pred = dir_pred
self.dir_output = dir_output
self.file_paths = [path for path in self.dir_pred.glob('**/*') if path.is_file()]
self.targets, self.res_dict = self._get_targets_and_init_dict(self.file_paths[0])
self.posterior_dict = self._calc_posteriors()
np.save(f"{self.dir_output}/posterior.npy",
{**self.res_dict, **self.posterior_dict})
self.final_pred_dict = self._calc_final_pred_sigma()
self.df_pred = pd.DataFrame({**self.res_dict, **self.final_pred_dict})
self.df_pred.to_csv(f"{self.dir_output}/final_pred.csv", index=False)
def _get_targets_and_init_dict(self, file_path):
res_dict = {}
targets = []
df = pd.read_csv(file_path)
all_keys = list(df.keys())
for key in all_keys:
if key.endswith("____truth"):
res_dict[key] = df[key].values
target = key.replace("____truth", "")
targets.append(target)
return targets, res_dict
def _calc_posteriors_single_file(self, file_path, posterior_dict):
df = pd.read_csv(file_path)
for target in self.targets:
pred = df[f"{target}____pred"]
sigma = df[f"{target}____sigma"]
posterior = np.random.normal(loc=pred, scale=sigma)
posterior_dict[target].append(posterior)
return posterior_dict
def _calc_posteriors(self):
posterior_dict = {target: [] for target in self.targets}
for file_path in tqdm(self.file_paths):
posterior_dict = self._calc_posteriors_single_file(file_path, posterior_dict)
keys = [key for key in posterior_dict.keys()]
for key in keys:
posterior_dict[key] = np.array(posterior_dict[key])
posterior_dict[f"{key}____posterior"] = posterior_dict.pop(key)
return posterior_dict
def _calc_final_pred_sigma(self):
final_pred_dict = {}
for target in self.targets:
posterior = self.posterior_dict[f"{target}____posterior"]
final_pred_dict[f"{target}____pred"] = np.mean(posterior, axis=0)
final_pred_dict[f"{target}____sigma"] = np.std(posterior, axis=0)
return final_pred_dict