-
Notifications
You must be signed in to change notification settings - Fork 777
/
_index.html
178 lines (173 loc) · 7.79 KB
/
_index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
+++
title = "Kubeflow"
+++
<!-- Hero section -->
{{<blocks/cover title="Kubeflow" image_anchor="center" color="dark">}}
<div class="px-2">
<p class="lead mt-5 mb-3">The Machine Learning Toolkit for Kubernetes</p>
<div class="mx-auto">
<a class="btn btn-lg btn-primary mr-1 mb-4" href="/docs/started/">
Get Started <i class="fas fa-arrow-alt-circle-right ml-2"></i>
</a>
<a class="btn btn-lg btn-secondary ml-1 mb-4" href="/docs/about/contributing/">
Contribute <i class="fas fa-pencil-alt ml-2"></i>
</a>
</div>
<div class="mt-5">
{{<blocks/link-down color="light">}}
</div>
</div>
{{</blocks/cover>}}
<div id="overview" class="text-center">
<h3 class="section-head">What is Kubeflow?</h3>
<div class="container">
<p class="mx-auto col-11 col-xl-7 px-0">
Kubeflow makes artificial intelligence and machine learning simple, portable, and scalable.
We are an <i>ecosystem</i> of <a href="https://kubernetes.io/" target="_blank">Kubernetes</a>
based components for each stage in
<a href="/docs/started/architecture/#kubeflow-components-in-the-ml-lifecycle" target="_blank">the AI/ML Lifecycle</a>
with support for best-in-class open source <a href="/docs/started/architecture/#kubeflow-ecosystem" target="_blank">tools and frameworks</a>.
<br><br>
<a href="/docs/started/installing-kubeflow/" target="_blank">Deploy Kubeflow</a> anywhere you run Kubernetes.
</p>
</div>
</div>
<section id="pageContent">
<h3 class="section-head text-center">Kubeflow Components</h3>
<div class="container">
<div class="card-deck">
<div class="card border-primary-dark">
<a href="/docs/components/pipelines/overview/" target="_blank" rel="noopener" >
<img
src="/docs/images/logos/kubeflow.png"
class="card-img-top"
draggable="false"
style="padding: 2rem;"
alt="Kubeflow Pipelines Logo"
/>
</a>
<div class="card-body bg-primary-dark">
<h5 class="card-title text-white section-head">Pipelines</h5>
<p class="card-text text-white">
<a target="_blank" rel="noopener" href="/docs/components/pipelines/overview/">Kubeflow Pipelines</a> (KFP) is a platform for building then deploying portable and scalable machine learning workflows using Kubernetes.
</p>
</div>
</div>
<div class="card border-primary-dark">
<a href="/docs/components/notebooks/overview/" target="_blank" rel="noopener" >
<img
src="/docs/images/logos/jupyter-vscode-rlang.png"
class="card-img-top"
draggable="false"
style="padding: 2rem;"
alt="Jupyter + VSCode + RLang Logo"
/>
</a>
<div class="card-body bg-primary-dark">
<h5 class="card-title text-white section-head">Notebooks</h5>
<p class="card-text text-white">
<a target="_blank" rel="noopener" href="/docs/components/notebooks/overview/">Kubeflow Notebooks</a> lets you run web-based development environments on your Kubernetes cluster by running them inside Pods.
</p>
</div>
</div>
<div class="card border-primary-dark">
<a href="/docs/components/central-dash/overview/" target="_blank" rel="noopener" >
<img
src="/docs/images/logos/dashboard.png"
class="card-img-top"
draggable="false"
style="padding: 2rem;"
alt="People Icon"
/>
</a>
<div class="card-body bg-primary-dark">
<h5 class="card-title text-white section-head">Dashboard</h5>
<p class="card-text text-white">
<a href="/docs/components/central-dash/overview/" target="_blank" rel="noopener">Kubeflow Central Dashboard</a> is our hub which connects the authenticated web interfaces of Kubeflow and other ecosystem components.
</p>
</div>
</div>
</div>
<br />
<div class="card-deck">
<div class="card border-primary-dark">
<a href="/docs/components/katib/overview/" target="_blank" rel="noopener" >
<img
src="/docs/images/logos/katib.png"
class="card-img-top"
draggable="false"
style="padding: 2rem;"
alt="Katib Logo"
/>
</a>
<div class="card-body bg-primary-dark">
<h5 class="card-title text-white section-head">AutoML</h5>
<p class="card-text text-white">
<a target="_blank" rel="noopener" href="/docs/components/katib/overview/">Katib</a> is a Kubernetes-native project for automated machine learning (AutoML) with support for hyperparameter tuning, early stopping and neural architecture search.
</p>
</div>
</div>
<div class="card border-primary-dark">
<a href="/docs/components/training/overview/" target="_blank" rel="noopener" >
<img
src="/docs/images/logos/tensorflow-pytorch.png"
class="card-img-top"
draggable="false"
style="padding: 2rem;"
alt="TensorFlow + PyTorch Logo"
/>
</a>
<div class="card-body bg-primary-dark">
<h5 class="card-title text-white section-head">Model Training</h5>
<p class="card-text text-white">
<a href="/docs/components/training/overview/" target="_blank" rel="noopener" >Kubeflow Training Operator</a> is a unified interface for model training and fine-tuning on Kubernetes.
It runs scalable and distributed training jobs for popular frameworks including PyTorch, TensorFlow, MPI, MXNet, PaddlePaddle, and XGBoost.
</p>
</div>
</div>
<div class="card border-primary-dark">
<a href="https://kserve.github.io/website/" target="_blank" rel="noopener" >
<img
src="/docs/images/logos/kserve.png"
class="card-img-top"
draggable="false"
style="padding: 2rem;"
alt="KServe Logo"
/>
</a>
<div class="card-body bg-primary-dark">
<h5 class="card-title text-white section-head">Model Serving</h5>
<p class="card-text text-white">
<a href="/docs/external-add-ons/kserve/introduction/" target="_blank" rel="noopener">KServe</a> <small>(previously <em>KFServing</em>)</small> solves production model serving on Kubernetes.
It delivers high-abstraction and performant interfaces for frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX.
</p>
</div>
</div>
</div>
<br />
<!-- For future editors: If you are adding cards not in multiples of 3, wrap them in a 'card-columns' div instead of card-deck.
It will look more pleasing to the eye. -->
</div>
</section>
<div id="community" class="text-center">
<h3 class="section-head">Join our Community</h3>
<div class="container">
<p class="mx-auto col-md-7 px-0">
We are an open and welcoming <a href="/docs/about/community/" target="_blank" rel="noopener">community</a> of software developers, data scientists, and organizations!
Check out the <a href="/docs/about/community/#list-of-available-meetings">weekly community calls</a>, get involved in discussions on the <a href="/docs/about/community/#kubeflow-mailing-list">mailing list</a> or chat with others on the <a href="/docs/about/community/#kubeflow-slack-channels">Slack Workspace</a>!
</p>
</div>
</div>
<div id="cncf" class="text-center">
<div class="container">
<div class="mx-auto col-md-4">
<img
src="/docs/images/logos/cncf.svg"
draggable="false"
class="img-fluid"
alt="Cloud Native Computing Foundation Logo"
/>
</div>
<h5 class="cncf-title">We are a Cloud Native Computing Foundation project.</h5>
</div>
</div>