-
Notifications
You must be signed in to change notification settings - Fork 3.3k
/
Copy pathv2_horizontal_pod_autoscaler_spec.py
232 lines (173 loc) · 9.17 KB
/
v2_horizontal_pod_autoscaler_spec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding: utf-8
"""
Kubernetes
No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501
The version of the OpenAPI document: release-1.32
Generated by: https://openapi-generator.tech
"""
import pprint
import re # noqa: F401
import six
from kubernetes.client.configuration import Configuration
class V2HorizontalPodAutoscalerSpec(object):
"""NOTE: This class is auto generated by OpenAPI Generator.
Ref: https://openapi-generator.tech
Do not edit the class manually.
"""
"""
Attributes:
openapi_types (dict): The key is attribute name
and the value is attribute type.
attribute_map (dict): The key is attribute name
and the value is json key in definition.
"""
openapi_types = {
'behavior': 'V2HorizontalPodAutoscalerBehavior',
'max_replicas': 'int',
'metrics': 'list[V2MetricSpec]',
'min_replicas': 'int',
'scale_target_ref': 'V2CrossVersionObjectReference'
}
attribute_map = {
'behavior': 'behavior',
'max_replicas': 'maxReplicas',
'metrics': 'metrics',
'min_replicas': 'minReplicas',
'scale_target_ref': 'scaleTargetRef'
}
def __init__(self, behavior=None, max_replicas=None, metrics=None, min_replicas=None, scale_target_ref=None, local_vars_configuration=None): # noqa: E501
"""V2HorizontalPodAutoscalerSpec - a model defined in OpenAPI""" # noqa: E501
if local_vars_configuration is None:
local_vars_configuration = Configuration()
self.local_vars_configuration = local_vars_configuration
self._behavior = None
self._max_replicas = None
self._metrics = None
self._min_replicas = None
self._scale_target_ref = None
self.discriminator = None
if behavior is not None:
self.behavior = behavior
self.max_replicas = max_replicas
if metrics is not None:
self.metrics = metrics
if min_replicas is not None:
self.min_replicas = min_replicas
self.scale_target_ref = scale_target_ref
@property
def behavior(self):
"""Gets the behavior of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:return: The behavior of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:rtype: V2HorizontalPodAutoscalerBehavior
"""
return self._behavior
@behavior.setter
def behavior(self, behavior):
"""Sets the behavior of this V2HorizontalPodAutoscalerSpec.
:param behavior: The behavior of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:type: V2HorizontalPodAutoscalerBehavior
"""
self._behavior = behavior
@property
def max_replicas(self):
"""Gets the max_replicas of this V2HorizontalPodAutoscalerSpec. # noqa: E501
maxReplicas is the upper limit for the number of replicas to which the autoscaler can scale up. It cannot be less that minReplicas. # noqa: E501
:return: The max_replicas of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:rtype: int
"""
return self._max_replicas
@max_replicas.setter
def max_replicas(self, max_replicas):
"""Sets the max_replicas of this V2HorizontalPodAutoscalerSpec.
maxReplicas is the upper limit for the number of replicas to which the autoscaler can scale up. It cannot be less that minReplicas. # noqa: E501
:param max_replicas: The max_replicas of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:type: int
"""
if self.local_vars_configuration.client_side_validation and max_replicas is None: # noqa: E501
raise ValueError("Invalid value for `max_replicas`, must not be `None`") # noqa: E501
self._max_replicas = max_replicas
@property
def metrics(self):
"""Gets the metrics of this V2HorizontalPodAutoscalerSpec. # noqa: E501
metrics contains the specifications for which to use to calculate the desired replica count (the maximum replica count across all metrics will be used). The desired replica count is calculated multiplying the ratio between the target value and the current value by the current number of pods. Ergo, metrics used must decrease as the pod count is increased, and vice-versa. See the individual metric source types for more information about how each type of metric must respond. If not set, the default metric will be set to 80% average CPU utilization. # noqa: E501
:return: The metrics of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:rtype: list[V2MetricSpec]
"""
return self._metrics
@metrics.setter
def metrics(self, metrics):
"""Sets the metrics of this V2HorizontalPodAutoscalerSpec.
metrics contains the specifications for which to use to calculate the desired replica count (the maximum replica count across all metrics will be used). The desired replica count is calculated multiplying the ratio between the target value and the current value by the current number of pods. Ergo, metrics used must decrease as the pod count is increased, and vice-versa. See the individual metric source types for more information about how each type of metric must respond. If not set, the default metric will be set to 80% average CPU utilization. # noqa: E501
:param metrics: The metrics of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:type: list[V2MetricSpec]
"""
self._metrics = metrics
@property
def min_replicas(self):
"""Gets the min_replicas of this V2HorizontalPodAutoscalerSpec. # noqa: E501
minReplicas is the lower limit for the number of replicas to which the autoscaler can scale down. It defaults to 1 pod. minReplicas is allowed to be 0 if the alpha feature gate HPAScaleToZero is enabled and at least one Object or External metric is configured. Scaling is active as long as at least one metric value is available. # noqa: E501
:return: The min_replicas of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:rtype: int
"""
return self._min_replicas
@min_replicas.setter
def min_replicas(self, min_replicas):
"""Sets the min_replicas of this V2HorizontalPodAutoscalerSpec.
minReplicas is the lower limit for the number of replicas to which the autoscaler can scale down. It defaults to 1 pod. minReplicas is allowed to be 0 if the alpha feature gate HPAScaleToZero is enabled and at least one Object or External metric is configured. Scaling is active as long as at least one metric value is available. # noqa: E501
:param min_replicas: The min_replicas of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:type: int
"""
self._min_replicas = min_replicas
@property
def scale_target_ref(self):
"""Gets the scale_target_ref of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:return: The scale_target_ref of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:rtype: V2CrossVersionObjectReference
"""
return self._scale_target_ref
@scale_target_ref.setter
def scale_target_ref(self, scale_target_ref):
"""Sets the scale_target_ref of this V2HorizontalPodAutoscalerSpec.
:param scale_target_ref: The scale_target_ref of this V2HorizontalPodAutoscalerSpec. # noqa: E501
:type: V2CrossVersionObjectReference
"""
if self.local_vars_configuration.client_side_validation and scale_target_ref is None: # noqa: E501
raise ValueError("Invalid value for `scale_target_ref`, must not be `None`") # noqa: E501
self._scale_target_ref = scale_target_ref
def to_dict(self):
"""Returns the model properties as a dict"""
result = {}
for attr, _ in six.iteritems(self.openapi_types):
value = getattr(self, attr)
if isinstance(value, list):
result[attr] = list(map(
lambda x: x.to_dict() if hasattr(x, "to_dict") else x,
value
))
elif hasattr(value, "to_dict"):
result[attr] = value.to_dict()
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0], item[1].to_dict())
if hasattr(item[1], "to_dict") else item,
value.items()
))
else:
result[attr] = value
return result
def to_str(self):
"""Returns the string representation of the model"""
return pprint.pformat(self.to_dict())
def __repr__(self):
"""For `print` and `pprint`"""
return self.to_str()
def __eq__(self, other):
"""Returns true if both objects are equal"""
if not isinstance(other, V2HorizontalPodAutoscalerSpec):
return False
return self.to_dict() == other.to_dict()
def __ne__(self, other):
"""Returns true if both objects are not equal"""
if not isinstance(other, V2HorizontalPodAutoscalerSpec):
return True
return self.to_dict() != other.to_dict()