-
Notifications
You must be signed in to change notification settings - Fork 0
/
tokenizer.py
279 lines (239 loc) · 9.73 KB
/
tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
"""Custom Tokenization classes."""
import collections
import json
import os
import re
from typing import List, Optional, Tuple, Union
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {'vocab_file': 'vocab.json'}
PRETRAINED_VOCAB_FILES_MAP = {
'qm9': {
'vocab_file': {
'yairschiff/qm9-tokenizer': 'https://huggingface.co/yairschiff/qm9-tokenizer/resolve/main/vocab.json'
}
},
'zinc250k': {
'vocab_file': {
'yairschiff/zinc250k-tokenizer': 'https://huggingface.co/yairschiff/zinc250k-tokenizer/resolve/main/vocab.json'
}
}
}
class SMILESTokenizer(PreTrainedTokenizer):
r"""
Construct a tokenizer for SMILES datasets.
Based on regex.
This tokenizer inherits from [`PreTrainedTokenizer`]
which contains most of the main methods. Users should
refer to this superclass for more information regarding
those methods.
Adapted from:
https://huggingface.co/ibm/MoLFormer-XL-both-10pct
Args:
vocab_file (`str`):
File containing the vocabulary.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token not in the vocabulary
cannot be converted to an ID and is set to be
this token instead.
sep_token (`str`, *optional*, defaults to `"<eos>"`):
The separator token, which is used when building
a sequence from multiple sequences, e.g., two
sequences for sequence classification or for a
text and a question for question answering.
It is also used as the last token of a sequence
built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example, when
batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<bos>"`):
The classifier token which is used when doing
sequence classification (classification of the
whole sequence
instead of per-token classification). It is the
first token of the sequence when built with
special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the
token used when training this model with masked
language modeling. This is the token, which the
model will try to predict.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token='<unk>',
sep_token='<eos>',
pad_token='<pad>',
cls_token='<bos>',
mask_token='<mask>',
**kwargs,
):
if not os.path.isfile(vocab_file):
raise ValueError(
"Can't find a vocabulary file at path"
f"'{vocab_file}'."
)
with open(vocab_file, encoding="utf-8") as vocab_handle:
vocab_from_file = json.load(vocab_handle)
# Re-index to account for special tokens
self.vocab = {
cls_token: 0,
sep_token: 1,
mask_token: 2,
pad_token: 3,
unk_token: 4,
**{k: v + 5 for k, v in vocab_from_file.items()}
}
self.ids_to_tokens = collections.OrderedDict(
[(ids, tok) for tok, ids in self.vocab.items()])
# Regex pattern taken from:
# https://github.com/pschwllr/MolecularTransformer
self.pattern = (
r"(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])"
)
self.regex_tokenizer = re.compile(self.pattern)
super().__init__(
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
**kwargs,
)
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text, **kwargs):
split_tokens = self.regex_tokenizer.findall(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts sequence of tokens (string) in a single string."""
out_string = "".join(tokens).strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of
sequences for sequence classification tasks by
concatenating and adding special tokens.
A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will
be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence
pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids)
with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no
special tokens added. This method is called when
adding special tokens using the tokenizer
`prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether the token list is already formatted
with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range
[0, 1]: 1 for a special token, 0 for a sequence
token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be
used in a sequence-pair classification task.
A BERT sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns
the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence
pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(
self, save_directory: str,
filename_prefix: Optional[str] = None
) -> Union[Tuple[str], None]:
if not os.path.isdir(save_directory):
logger.error(
f"Vocabulary path ({save_directory}) should"
"be a directory.")
return None
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(
json.dumps(
self.vocab,
indent=2,
sort_keys=True,
ensure_ascii=False
) + "\n")
return (vocab_file,)
class QM9Tokenizer(SMILESTokenizer):
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP['qm9']
class Zinc250kTokenizer(SMILESTokenizer):
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP['zinc250k']