-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhamiltonian.py
230 lines (210 loc) · 6.31 KB
/
hamiltonian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from numpy import *
from copy import deepcopy
import graphene as grap
from edensity import *
from scipy.sparse import *
from scipy import *
def redand(bl):
return reduce(lambda x,y:x and y, bl)
class ham(object):
@property
def t0(self):return self.__t0
@property
def g(self): return self.__g
@property
def U(self): return self.__U
@property
def J(self): return self.__J
@property
def ed(self):return self.__ed
@ed.setter
def ed(self,newed):
self.__ed = newed
@property
def omg(self):return self.__omg
@property
def alp(self):return self.__alp
@property
def osc(self):return self.__osc
@property
def dim(self):return self.__dim
@property
def lstij(self):return self.__lstij
def __init__(self,width=6,length=10,boundary="open",holes=[],ledge=1.,
graphene=None, hopping=1.0,coulomb=1.3,
spincoupling=0.1, Ed=1.0, vibration=40.0, ssh=3.5 ):
if(graphene==None):
self.__g = grap.graphene(width,length,boundary,holes,ledge)
else:
self.__g = graphene
self.__t0 = hopping
self.__U = coulomb
self.__J = spincoupling
self.__ed = Ed
self.__omg = vibration
self.__alp = ssh
self.__osc = sum(
map(lambda x:reduce(self.g.ddispm,x)**2,
self.g.lslinks('1d')))
self.__nd = self.g.ndanglingc()
self.__nc = self.g.nvertex()
self.__dim = self.__nc# + self.__nd
self.__lstij = array(map( lambda x:map(self.p2i,x), self.g.lslinks('1d') ))
def lmd(self): return self.alp**2/self.t0/self.omg
def displace(self,p,d):
def f(x):
return self.g.isC(p) * self.g.ddispm(p,x)**2
pnb = self.g.pbneighb(p,'1d')
self.__osc -= sum(map(f,pnb))
self.g._displace(p,d)
self.__osc += sum(map(f,pnb))
def displacei(self,i,d):
p = self.i2p(i)
self.displace(p,d)
def diag(self,ip): #ip: index-pair of the matrix
if(not reduce(lambda x,y:x==y, ip)):
return 0
elif(redand(map(self.iinC,ip))):
return 1
else:
return 0
def Ht(self,ip):
if( redand(map(self.iinC,ip)) ):
pp = map(self.i2p,ip)
if( reduce(self.g.link,pp) ):
return -self.t0 * (1.0 - self.alp*reduce(self.g.ddistance,pp))
return 0.
else:
return 0.
def Hu(self,spin,eden,ip):
i = ip[0]
tmp = 0
if(self.iinC(i)):
tmp = eden.eden[flip(spin),i] #<n>n term
tmp -= reduce(dot,eden.eden) #<n><n> term
return self.U * tmp
def Hj(self,spin,eden,ip):
tmp = 0.
i = ip[0]
j = ip[1]
di = map(self.p2i, self.g.danglingc('1d')) #dangling vertece
dd = xrange(self.__nc,self.__dim+self.__nd) #dangling spins
tmp += dot( map(eden.spin, di), map(eden.spin, dd) ) # <S><S> term
#tmp -= sum(map(lambda x:x**2, eden.V)) /2. # V^2 term
spin = 1 if spin else 0 # make sure spin is 1 or 0
if(i in di):
tmp -= (-1)**(spin+1)/2. * eden.spin(self.i2id(i)) # <S>Sd terms
#if(i in dd):
# tmp -= (-1)**(spin+1) * eden.spin(self.id2i(i))/2. # <Sd>S terms
'''else:
if(i in di):
if(self.i2id(i)==j):
tmp -= eden.V[j-self.__nc]/2.
elif(i in dd):
if(self.id2i(i)==j):
tmp -= eden.V[i-self.__nc]/2.'''
return self.J * tmp
def Hd(self,ip):
if(redand(map(self.iind,ip)) and self.diag(ip) ):
return self.ed
else:
return 0.
def Ho(self,ip):
return self.omg * self.osc
def Hdia(self,spin,eden,ip):
if( not(redand(map(self.iinC,ip)) )):
return 0.
else:
return self.Hu(spin,eden,ip) + self.Ho(ip) + self.Hj(spin,eden,ip)
def Hall(self,spin,eden,ip):
return self.Ht(ip) + self.Hdia(spin,eden,ip)# + self.Hd(ip)
def matcsr(self,spin,eden):
return self.matcoo(spin,eden).tocsr()
def mat(self,spin,eden):
return self.matcoo(spin,eden).todense()
def matcoo(self,spin,eden):
#----initialization-----
ll = len(self.lstij)
n = self.dim + ll# + self.__nd
row = zeros(n,dtype=int)
dat = zeros(n,dtype=float)
#---------Hdia-----------
row[:self.dim] = xrange(self.dim)
col = deepcopy(row)
dat[:self.dim] = [self.Hdia(spin,eden,[i,i]) for i in xrange(self.dim)]
#----------Ht------------
col[self.dim:self.dim+ll], row[self.dim:self.dim+ll] = self.lstij.transpose()
#col[self.dim+ll:self.dim+2*ll], row[self.dim+ll:self.dim+2*ll] = self.lstij.transpose()
tmp = map(self.Ht, self.lstij)
dat[self.dim : self.dim+ll] = tmp
#dat[self.dim+ll : self.dim+2*ll] = tmp
#----------Hjo-----------
'''
if(self.__nd!=0):
di = map(self.p2i, self.g.danglingc('1d')) #dangling vertece
dd = xrange(self.__nc,self.__dim) #dangling spins
col[-self.__nd:] = di
row[-self.__nd:] = dd
#row[self.dim + 2*ll : self.dim + 2*ll + self.__nd] = di
#row[-self.__nd:] = dd
#col[self.dim + 2*ll : self.dim + 2*ll + self.__nd] = dd
#col[-self.__nd:] = di
tmp = [self.Hall(spin,eden,[di[i],dd[i]]) for i in xrange(self.__nd)]
#dat[self.dim + 2*ll : self.dim + 2*ll + self.__nd] = tmp
dat[-self.__nd:] = tmp
'''
return coo_matrix( (dat,(row,col)), shape=(self.dim,self.dim) )
#---------------------------------------------------------------#
def p2i(self,p):
#p = self.g.pnt(p,'1d')
return self.g.p2i[p]
#h = self.g.holes('1d')
#if(p in h):
# return None
# else:
# return p - len(filter(lambda x:x<p,h))
def i2p(self,i,form='1d'):
if(form=='1d'):
return self.g.i2p[i]
else:
return self.g.pnt(self.g.i2p[i],form)
'''
h = self.g.holes('1d')
lenh = self.g.nholes()
if(self.g.holes('1d')==[]):
p = i
elif(h[0]>i):
p = i
elif(h[-1]-lenh<i):
p = i+lenh
else:
k = 0
while(not(h[k]-k<i+1 and i+1<=h[k+1]-k-1)):
k += 1
p = i + k+1
if(form=='1d'):
return p
else:
return self.g.pnt(p,form)
'''
def iinC(self,i):
return 1 if(0<=i and i<self.__nc) else 0
def iind(self,i):
return 1 if(self.__nc<=i and i<self.__nc+self.__nd) else 0
def iinCd(self,i):
return 1 if(0<=i and i<self.__dim) else 0
def id2p(self,i,form='1d'):
if not self.iind(i):
try: 1/0
except: print "id2p: i not a dangling point"
raise
else:
return self.g.danglingc(form)[i-self.__nc]
def id2i(self,i):
return self.p2i(self.id2p(i))
def p2id(self,d):
#d = self.g.pnt(d,'1d')
i = list(self.g.danglingc('1d')).index(d)
return i + self.__nc
def i2id(self,i):
return self.p2id(self.i2p(i))