-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathGeom2D.hs
287 lines (242 loc) · 9.78 KB
/
Geom2D.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
{-# LANGUAGE TypeFamilies, MultiParamTypeClasses, FlexibleInstances, DeriveTraversable, FunctionalDependencies #-}
-- | Basic 2 dimensional geometry functions.
module Geom2D (
module Data.VectorSpace,
module Data.Cross,
module Geom2D ) where
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as V
import Data.VectorSpace
import Data.Cross
import Control.Monad
import Numeric.FastMath
infixr 5 $*
data Point a = Point {
pointX :: !a,
pointY :: !a
} deriving (Eq, Ord, Functor, Foldable, Traversable)
type DPoint = Point Double
instance Show a => Show (Point a) where
show (Point x y) =
"Point " ++ show x ++ " " ++ show y
-- | A transformation (x, y) -> (ax + by + c, dx + ey + d)
data Transform a = Transform {
xformA :: !a,
xformB :: !a,
xformC :: !a,
xformD :: !a,
xformE :: !a,
xformF :: !a }
deriving (Eq, Show, Functor, Foldable, Traversable)
data Line a = Line (Point a) (Point a)
deriving (Show, Eq, Functor, Foldable, Traversable)
data Polygon a = Polygon [Point a]
deriving (Show, Eq, Functor, Foldable, Traversable)
class AffineTransform a b | a -> b where
transform :: Transform b -> a -> a
instance Num a => AffineTransform (Transform a) a where
{-# INLINE transform #-}
transform (Transform a' b' c' d' e' f') (Transform a b c d e f) =
Transform (a*a'+b'*d) (a'*b + b'*e) (a'*c+b'*f +c')
(d'*a+e'*d) (d'*b+e'*e) (d'*c+e'*f+f')
instance Num a => AffineTransform (Point a) a where
{-# INLINE transform #-}
transform (Transform a b c d e f) (Point x y) =
Point (a*x + b*y + c) (d*x + e*y + f)
instance Num a => AffineTransform (Polygon a) a where
{-# INLINE transform #-}
transform t (Polygon p) = Polygon $ map (transform t) p
newtype instance V.MVector s (Point a) = MV_Point (V.MVector s (a, a))
newtype instance V.Vector (Point a) = V_Point (V.Vector (a, a))
instance V.Unbox a => V.Unbox (Point a)
instance V.Unbox a => M.MVector V.MVector (Point a) where
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicOverlaps #-}
{-# INLINE basicUnsafeNew #-}
{-# INLINE basicUnsafeReplicate #-}
{-# INLINE basicUnsafeRead #-}
{-# INLINE basicUnsafeWrite #-}
{-# INLINE basicClear #-}
{-# INLINE basicSet #-}
{-# INLINE basicUnsafeCopy #-}
{-# INLINE basicUnsafeGrow #-}
basicInitialize (MV_Point v) = M.basicInitialize v
basicLength (MV_Point v) = M.basicLength v
basicUnsafeSlice i n (MV_Point v) = MV_Point $ M.basicUnsafeSlice i n v
basicOverlaps (MV_Point v1) (MV_Point v2) = M.basicOverlaps v1 v2
basicUnsafeNew n = MV_Point `liftM` M.basicUnsafeNew n
basicUnsafeReplicate n (Point x y) = MV_Point `liftM` M.basicUnsafeReplicate n (x,y)
basicUnsafeRead (MV_Point v) i = uncurry Point `liftM` M.basicUnsafeRead v i
basicUnsafeWrite (MV_Point v) i (Point x y) = M.basicUnsafeWrite v i (x,y)
basicClear (MV_Point v) = M.basicClear v
basicSet (MV_Point v) (Point x y) = M.basicSet v (x,y)
basicUnsafeCopy (MV_Point v1) (MV_Point v2) = M.basicUnsafeCopy v1 v2
basicUnsafeGrow (MV_Point v) n = MV_Point `liftM` M.basicUnsafeGrow v n
instance V.Unbox a => G.Vector V.Vector (Point a) where
{-# INLINE basicUnsafeFreeze #-}
{-# INLINE basicUnsafeThaw #-}
{-# INLINE basicLength #-}
{-# INLINE basicUnsafeSlice #-}
{-# INLINE basicUnsafeIndexM #-}
{-# INLINE elemseq #-}
basicUnsafeFreeze (MV_Point v) = V_Point `liftM` G.basicUnsafeFreeze v
basicUnsafeThaw (V_Point v) = MV_Point `liftM` G.basicUnsafeThaw v
basicLength (V_Point v) = G.basicLength v
basicUnsafeSlice i n (V_Point v) = V_Point $ G.basicUnsafeSlice i n v
basicUnsafeIndexM (V_Point v) i
= uncurry Point `liftM` G.basicUnsafeIndexM v i
basicUnsafeCopy (MV_Point mv) (V_Point v)
= G.basicUnsafeCopy mv v
elemseq _ (Point x y) z = G.elemseq (undefined :: V.Vector a) x
$ G.elemseq (undefined :: V.Vector a) y z
-- | Operator for applying a transformation.
($*) :: AffineTransform a b => Transform b -> a -> a
t $* p = transform t p
{-# INLINE ($*) #-}
-- | Calculate the inverse of a transformation.
inverse :: (Eq a, Fractional a) => Transform a -> Maybe (Transform a)
inverse (Transform a b c d e f) = case a*e - b*d of
0 -> Nothing
det -> Just $! Transform (a/det) (d/det) (-(a*c + d*f)/det) (b/det) (e/det)
(-(b*c + e*f)/det)
{-# SPECIALIZE inverse :: Transform Double -> Maybe (Transform Double) #-}
-- | Return the parameters (a, b, c) for the normalised equation
-- of the line: @a*x + b*y + c = 0@.
lineEquation :: Floating t => Line t -> ( t, t, t )
lineEquation (Line (Point x1 y1) (Point x2 y2)) =
a `seq` b `seq` c `seq` (a, b, c)
where a = a' / d
b = b' / d
c = -(y1*b' + x1*a') / d
a' = y1 - y2
b' = x2 - x1
d = sqrt(a'*a' + b'*b')
{-# SPECIALIZE lineEquation :: Line Double -> (Double, Double, Double) #-}
-- | Return the signed distance from a point to the line. If the
-- distance is negative, the point lies to the right of the line
lineDistance :: Floating a => Line a -> Point a -> a
lineDistance (Line (Point x1 y1) (Point x2 y2)) =
let dy = y1 - y2
dx = x2 - x1
d = sqrt(dx*dx + dy*dy)
in dy `seq` dx `seq` d `seq`
\(Point x y) -> (x-x1)*dy/d + (y-y1)*dx/d
{-# INLINE lineDistance #-}
-- | Return the point on the line closest to the given point.
closestPoint :: Fractional a => Line a -> Point a -> Point a
closestPoint (Line p1 p2) p3 = Point px py
where
(Point dx dy) = p2 ^-^ p1
u = dy*pointY p3 + dx*pointX p3
v = pointX p1*pointY p2 - pointX p2*pointY p1
m = dx*dx + dy*dy
px = (dx*u + dy*v) / m
py = (dy*u - dx*v) / m
{-# specialize closestPoint :: Line Double -> Point Double -> Point Double #-}
-- | Calculate the intersection of two lines. If the determinant is
-- less than tolerance (parallel or coincident lines), return Nothing.
lineIntersect :: (Ord a, Floating a) => Line a -> Line a -> a -> Maybe (Point a)
lineIntersect (Line p1 p2) (Line p3 p4) eps
| abs det <= eps = Nothing
| otherwise = Just $ (a*^d2 ^-^ b*^d1) ^/ det
where
d1 = p1 ^-^ p2
d2 = p3 ^-^ p4
det = vectorCross d1 d2
a = vectorCross p1 p2
b = vectorCross p3 p4
{-# SPECIALIZE lineIntersect :: Line Double -> Line Double -> Double -> Maybe DPoint #-}
-- | The lenght of the vector.
vectorMag :: Floating a => Point a -> a
vectorMag (Point x y) = sqrt(x*x + y*y)
{-# INLINE vectorMag #-}
-- | The lenght of the vector.
vectorMagSquare :: Floating a => Point a -> a
vectorMagSquare (Point x y) = x*x + y*y
{-# INLINE vectorMagSquare #-}
-- | The angle of the vector, in the range @(-'pi', 'pi']@.
vectorAngle :: RealFloat a => Point a -> a
vectorAngle (Point 0.0 0.0) = 0.0
vectorAngle (Point x y) = atan2 y x
{-# INLINE vectorAngle #-}
-- | The unitvector with the given angle.
dirVector :: Floating a => a -> Point a
dirVector angle = Point (cos angle) (sin angle)
{-# INLINE dirVector #-}
-- | The unit vector with the same direction.
normVector :: Floating a => Point a -> Point a
normVector p@(Point x y) = Point (x/l) (y/l)
where l = vectorMag p
{-# INLINE normVector #-}
instance Num e => AdditiveGroup (Point e) where
zeroV = Point 0 0
{-# INLINE (^+^) #-}
(Point x1 y1) ^+^ (Point x2 y2) = Point (x1+x2) (y1+y2)
{-# INLINE negateV #-}
negateV (Point a b) = Point (-a) (-b)
{-# INLINE (^-^) #-}
(Point x1 y1) ^-^ (Point x2 y2) = Point (x1-x2) (y1-y2)
instance (Num e) => VectorSpace (Point e) where
type Scalar (Point e) = e
s *^ (Point x y) = Point (s*x) (s*y)
instance (AdditiveGroup e, Num e) => InnerSpace (Point e) where
(<.>) = (^.^)
instance (Floating e) => HasNormal (Point e) where
normalVec = normVector
-- | Dot product of two vectors.
(^.^) :: Num a => Point a -> Point a -> a
(Point x1 y1) ^.^ (Point x2 y2) = x1*x2 + y1*y2
{-# INLINE (^.^) #-}
-- | Cross product of two vectors.
vectorCross :: Num a => Point a -> Point a -> a
vectorCross (Point x1 y1) (Point x2 y2) = x1*y2 - y1*x2
{-# INLINE vectorCross #-}
-- | Distance between two vectors.
vectorDistance :: Floating a => Point a -> Point a -> a
vectorDistance p q = vectorMag (p^-^q)
{-# INLINE vectorDistance #-}
-- | Interpolate between two vectors.
interpolateVector :: (Num a) => Point a -> Point a -> a -> Point a
interpolateVector a b t = t*^b ^+^ (1-t)*^a
{-# INLINE interpolateVector #-}
-- | Create a transform that rotates by the angle of the given vector
-- and multiplies with the magnitude of the vector.
rotateScaleVec :: Num a => Point a -> Transform a
rotateScaleVec (Point x y) = Transform x (-y) 0 y x 0
{-# INLINE rotateScaleVec #-}
-- | reflect the vector over the X-axis.
flipVector :: (Num a) => Point a -> Point a
flipVector (Point x y) = Point x (-y)
{-# INLINE flipVector #-}
turnAround :: (Num a) => Point a -> Point a
turnAround = negateV
{-# INLINE turnAround #-}
-- | Create a transform that rotates by the angle of the given vector
-- with the x-axis
rotateVec :: Floating a => Point a -> Transform a
rotateVec v = Transform x (-y) 0 y x 0
where Point x y = normVector v
{-# INLINE rotateVec #-}
-- | Create a transform that rotates by the given angle (radians).
rotate :: Floating s => s -> Transform s
rotate a = Transform (cos a) (negate $ sin a) 0
(sin a) (cos a) 0
{-# INLINE rotate #-}
-- | Rotate vector 90 degrees left.
rotate90L :: Floating s => Transform s
rotate90L = Transform 0 (-1) 0 1 0 0
{-# INLINE rotate90L #-}
-- | Rotate vector 90 degrees right.
rotate90R :: Floating s => Transform s
rotate90R = Transform 0 1 0 (-1) 0 0
{-# INLINE rotate90R #-}
-- | Create a transform that translates by the given vector.
translate :: Num a => Point a -> Transform a
translate (Point x y) = Transform 1 0 x 0 1 y
{-# INLINE translate #-}
-- | The identity transformation.
idTrans :: Num a => Transform a
idTrans = Transform 1 0 0 0 1 0
{-# INLINE idTrans #-}