-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
63 lines (42 loc) · 1.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from timeit import timeit
import numpy as np
from scipy import signal
import numba as nb
import fftconv
def test_conv(x, y):
gt = np.convolve(x, y)
def _test(func):
np.allclose(gt, func(x, y))
_test(fftconv.convolve_fftw)
_test(fftconv.oaconvolve_fftw)
print("Vectors are equal.")
N_RUNS = 5000
@nb.njit(nogil=True, fastmath=True, cache=True)
def numba_convolve(x, y):
return np.convolve(x, y)
def run_bench(x, y):
def _timeit(name, func):
elapsed_ms = 1000 * timeit(
func,
number=N_RUNS,
)
print(f" ({N_RUNS} runs) {name} took {round(elapsed_ms)}ms")
_timeit("convolve_fftw", lambda: fftconv.convolve_fftw(x, y))
_timeit("oaconvolve_fftw", lambda: fftconv.oaconvolve_fftw(x, y))
numba_convolve(x, y) # warm jit
_timeit("np.convolve", lambda: np.convolve(x, y))
_timeit("numba.njit(np.convolve)", lambda: numba_convolve(x, y))
_timeit("scipy.signal.convolve", lambda: signal.convolve(x, y))
_timeit("scipy.signal.fftconvolve", lambda: signal.fftconvolve(x, y))
_timeit("scipy.signal.oaconvolve", lambda: signal.oaconvolve(x, y))
def run_test_case(x, y):
print(f"=== test case ({x.size}, {y.size}) ===")
test_conv(x, y)
run_bench(x, y)
def get_vec(n):
return np.random.random(n)
if __name__ == "__main__":
run_test_case(get_vec(1664), get_vec(65))
run_test_case(get_vec(2816), get_vec(65))
run_test_case(get_vec(2304), get_vec(65))
run_test_case(get_vec(4352), get_vec(65))