-
Notifications
You must be signed in to change notification settings - Fork 21
/
cfg.py
92 lines (86 loc) · 4.17 KB
/
cfg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import json
import numpy as np
import os
import utils
class Config:
def __init__(self, config_file):
# setting params
with open(config_file) as json_file:
config = json.load(json_file)
# training strategy
self.do_bg = bool(config["trainer"]["do_bg"])
self.training_device = config["trainer"]["train_device"]
self.data_device = config["trainer"]["data_device"]
self.max_n_models = config["trainer"]["n_models"]
self.live_mode = bool(config["dataset"]["live"])
self.keep_live_time = config["dataset"]["keep_alive"]
self.imap_mode = config["trainer"]["imap_mode"]
self.training_strategy = config["trainer"]["training_strategy"] # "forloop" "vmap"
self.obj_id = -1
# dataset setting
self.dataset_format = config["dataset"]["format"]
self.dataset_dir = config["dataset"]["path"]
self.depth_scale = 1 / config["trainer"]["scale"]
# camera setting
self.max_depth = config["render"]["depth_range"][1]
self.min_depth = config["render"]["depth_range"][0]
self.mh = config["camera"]["mh"]
self.mw = config["camera"]["mw"]
self.height = config["camera"]["h"]
self.width = config["camera"]["w"]
self.H = self.height - 2 * self.mh
self.W = self.width - 2 * self.mw
if "fx" in config["camera"]:
self.fx = config["camera"]["fx"]
self.fy = config["camera"]["fy"]
self.cx = config["camera"]["cx"] - self.mw
self.cy = config["camera"]["cy"] - self.mh
else: # for scannet
intrinsic = utils.load_matrix_from_txt(os.path.join(self.dataset_dir, "intrinsic/intrinsic_depth.txt"))
self.fx = intrinsic[0, 0]
self.fy = intrinsic[1, 1]
self.cx = intrinsic[0, 2] - self.mw
self.cy = intrinsic[1, 2] - self.mh
if "distortion" in config["camera"]:
self.distortion_array = np.array(config["camera"]["distortion"])
elif "k1" in config["camera"]:
k1 = config["camera"]["k1"]
k2 = config["camera"]["k2"]
k3 = config["camera"]["k3"]
k4 = config["camera"]["k4"]
k5 = config["camera"]["k5"]
k6 = config["camera"]["k6"]
p1 = config["camera"]["p1"]
p2 = config["camera"]["p2"]
self.distortion_array = np.array([k1, k2, p1, p2, k3, k4, k5, k6])
else:
self.distortion_array = None
# training setting
self.win_size = config["model"]["window_size"]
self.n_iter_per_frame = config["render"]["iters_per_frame"]
self.n_per_optim = config["render"]["n_per_optim"]
self.n_samples_per_frame = self.n_per_optim // self.win_size
self.win_size_bg = config["model"]["window_size_bg"]
self.n_per_optim_bg = config["render"]["n_per_optim_bg"]
self.n_samples_per_frame_bg = self.n_per_optim_bg // self.win_size_bg
self.keyframe_buffer_size = config["model"]["keyframe_buffer_size"]
self.keyframe_step = config["model"]["keyframe_step"]
self.keyframe_step_bg = config["model"]["keyframe_step_bg"]
self.obj_scale = config["model"]["obj_scale"]
self.bg_scale = config["model"]["bg_scale"]
self.hidden_feature_size = config["model"]["hidden_feature_size"]
self.hidden_feature_size_bg = config["model"]["hidden_feature_size_bg"]
self.n_bins_cam2surface = config["render"]["n_bins_cam2surface"]
self.n_bins_cam2surface_bg = config["render"]["n_bins_cam2surface_bg"]
self.n_bins = config["render"]["n_bins"]
self.n_unidir_funcs = config["model"]["n_unidir_funcs"]
self.surface_eps = config["model"]["surface_eps"]
self.stop_eps = config["model"]["other_eps"]
# optimizer setting
self.learning_rate = config["optimizer"]["args"]["lr"]
self.weight_decay = config["optimizer"]["args"]["weight_decay"]
# vis setting
self.vis_device = config["vis"]["vis_device"]
self.n_vis_iter = config["vis"]["n_vis_iter"]
self.live_voxel_size = config["vis"]["live_voxel_size"]
self.grid_dim = config["vis"]["grid_dim"]