-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSLC-PTC.py
98 lines (74 loc) · 3.49 KB
/
SLC-PTC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from transformers import AutoTokenizer, AutoModel
from datasets import load_dataset, load_metric
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
from transformers import DataCollatorWithPadding
import torch
import numpy as np
# export CUDA_VISIBLE_DEVICES=0,2
# device = "cuda:0" # if torch.cuda.is_available() else "cpu"
chkp = "Kyleiwaniec/PTC_TAPT_RoBERTa_large"
model = AutoModelForSequenceClassification.from_pretrained(chkp, use_auth_token='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', num_labels=19)
tokenizer = AutoTokenizer.from_pretrained(chkp, use_auth_token='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')
dataset = load_dataset('Kyleiwaniec/PTC_Corpus', use_auth_token='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')
def preprocess_function(examples):
return tokenizer(examples["text"], padding=True, truncation=True, return_tensors="pt")
classification = 'multi' #'binary'
def update_labels(example):
example['labels'] = example['labels'][0] if len(example['labels']) else 18
return example
if classification == 'multi':
# For multiclass classification use the technique classification as labels
dataset = dataset.rename_column("labels", "binary_labels")
dataset = dataset.rename_column("technique_classification", "labels")
tokenized_dataset = dataset.map(preprocess_function, batched=True)
tokenized_dataset = tokenized_dataset.remove_columns(['article_id', 'text', 'binary_labels', 'offsets'])
# use only the first label.
tokenized_dataset = tokenized_dataset.map(update_labels, num_proc=4)
else: #binary
# binary classification
tokenized_dataset = dataset.map(preprocess_function, batched=True)
tokenized_dataset = tokenized_dataset.remove_columns(['article_id', 'text', 'technique_classification', 'offsets'])
tiny_train_dataset = tokenized_dataset["train"].shuffle(seed=42).select(range(100))
tiny_eval_dataset = tokenized_dataset["validation"].shuffle(seed=42).select(range(10))
small_train_dataset = tokenized_dataset["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_dataset["validation"].shuffle(seed=42).select(range(1000))
train_dataset = tokenized_dataset["train"]
eval_dataset = tokenized_dataset["validation"]
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
#,"matthews_correlation","f1","precision","recall"
metrics = load_metric("f1","matthews_correlation")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metrics.compute(predictions=predictions, average='weighted', references=labels)
model_name = chkp.split("/")[-1]
out_dir = "../models/TAPT_n_RoBERTa_TC_PTC/"
#no_cuda=True
training_args = TrainingArguments(
output_dir=out_dir,
evaluation_strategy="epoch",
save_strategy="steps",
save_steps=1500,
save_total_limit=6,
learning_rate=2e-5,
gradient_accumulation_steps=8,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01
)
# optim="adafactor"
# gradient_accumulation_steps - effectively increases the batch to gradient_accumulation_steps * per_device_train_batch_size
# https://huggingface.co/docs/transformers/main/en/perf_train_gpu_one
# compute_metrics=compute_metrics,
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics,
)
trainer.train()
trainer.save_model()