-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
240 lines (187 loc) · 10.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch.nn as nn
from config import ACTIVATION_FUNCTIONS, device
import torch.nn as nn
from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
import torch
from config import ACTIVATION_FUNCTIONS
from sub_modules import GatedResidualNetwork, VariableSelectionNetwork, GateAddNormNetwork, \
InterpretableMultiHeadAttention
import math
class RNN(nn.Module):
def __init__(self, d_in, d_out, n_layers=1, bi=True, dropout=0.2, n_to_1=False):
super(RNN, self).__init__()
self.rnn = nn.GRU(input_size=d_in, hidden_size=d_out, bidirectional=bi, num_layers=n_layers, dropout=dropout)
self.n_layers = n_layers
self.d_out = d_out
self.n_directions = 2 if bi else 1
self.n_to_1 = n_to_1
def forward(self, x, x_len):
x_packed = pack_padded_sequence(x, x_len.cpu(), batch_first=True, enforce_sorted=False)
rnn_enc = self.rnn(x_packed)
if self.n_to_1:
# hiddenstates, h_n, only last layer
return last_item_from_packed(rnn_enc[0], x_len)
# batch_size = x.shape[0]
# h_n = h_n.view(self.n_layers, self.n_directions, batch_size, self.d_out) # (NL, ND, BS, dim)
# last_layer = h_n[-1].permute(1,0,2) # (BS, ND, dim)
# x_out = last_layer.reshape(batch_size, self.n_directions * self.d_out) # (BS, ND*dim)
else:
x_out = rnn_enc[0]
x_out = pad_packed_sequence(x_out, total_length=x.size(1), batch_first=True)[0]
return x_out
# https://discuss.pytorch.org/t/get-each-sequences-last-item-from-packed-sequence/41118/7
def last_item_from_packed(packed, lengths):
sum_batch_sizes = torch.cat((
torch.zeros(2, dtype=torch.int64),
torch.cumsum(packed.batch_sizes, 0)
)).to(device)
sorted_lengths = lengths[packed.sorted_indices].to(device)
last_seq_idxs = sum_batch_sizes[sorted_lengths] + torch.arange(lengths.size(0)).to(device)
last_seq_items = packed.data[last_seq_idxs]
last_seq_items = last_seq_items[packed.unsorted_indices]
return last_seq_items
class OutLayer(nn.Module):
def __init__(self, d_in, d_hidden, d_out, dropout=.0, bias=.0):
super(OutLayer, self).__init__()
self.fc_1 = nn.Sequential(nn.Linear(d_in, d_hidden), nn.ReLU(True), nn.Dropout(dropout))
self.fc_2 = nn.Linear(d_hidden, d_out)
nn.init.constant_(self.fc_2.bias.data, bias)
def forward(self, x):
y = self.fc_2(self.fc_1(x))
return y
class Model(nn.Module):
def __init__(self, params):
super(Model, self).__init__()
self.params = params
self.inp = nn.Linear(params.d_in, params.model_dim, bias=False)
self.encoder = RNN(params.model_dim, params.model_dim, n_layers=params.rnn_n_layers, bi=params.rnn_bi,
dropout=params.rnn_dropout, n_to_1=params.n_to_1)
d_rnn_out = params.model_dim * 2 if params.rnn_bi and params.rnn_n_layers > 0 else params.model_dim
self.out = OutLayer(d_rnn_out, params.d_fc_out, params.n_targets, dropout=params.linear_dropout)
self.final_activation = ACTIVATION_FUNCTIONS[params.task]()
def forward(self, x, x_len):
x = self.inp(x)
x = self.encoder(x, x_len)
y = self.out(x)
activation = self.final_activation(y)
return activation
def set_n_to_1(self, n_to_1):
self.encoder.n_to_1 = n_to_1
class TFT_encoder(nn.Module):
def __init__(self, params):
super(TFT_encoder, self).__init__()
self.hparams = params
print("params.d_in", params.d_in) # 입력차원 faus =20 , egemaps = 88
print("params.d_rnn(model_dim)", params.model_dim) # rnn hidden layer의 차원
print("params.rnn_n_layers", params.rnn_n_layers) # rnn의 수
print("params.rnn_dropout", params.rnn_dropout) # drop out rate
self.inp = nn.Linear(params.d_in, params.model_dim, bias=False)
if params.rnn_n_layers > 0:
self.rnn = RNN(params.model_dim, params.model_dim, n_layers=params.rnn_n_layers, bi=params.rnn_bi,
dropout=params.rnn_dropout, n_to_1=params.n_to_1)
# code.interact(local=dict(globals(), **locals()))
d_rnn_out = params.model_dim * 2 if params.rnn_bi and params.rnn_n_layers > 0 else params.model_dim
self.regular_var_embeddings = nn.ModuleList([nn.Linear(1, params.model_dim) for i in range(params.d_in)])
self.vsn = VariableSelectionNetwork(hidden_layer_size=params.model_dim,
input_size=params.d_in * params.model_dim,
output_size=params.d_in,
dropout_rate=params.rnn_dropout)
self.state_h_grn = GatedResidualNetwork(params.model_dim, dropout_rate=params.rnn_dropout,
output_size=params.model_dim)
self.state_c_grn = GatedResidualNetwork(params.model_dim, dropout_rate=params.rnn_dropout,
output_size=params.model_dim)
self.post_seq_encoder_gate_add_norm = GateAddNormNetwork(params.model_dim,
params.model_dim,
params.rnn_dropout,
activation=None)
self.self_attn_layer = InterpretableMultiHeadAttention(n_head=params.rnn_n_layers,
d_model=params.model_dim,
dropout=params.rnn_dropout)
self.lstm = nn.LSTM(input_size=params.model_dim, hidden_size=params.model_dim, batch_first=True)
self.final_activation = ACTIVATION_FUNCTIONS[params.task]()
## Initializing remaining weights
self.out = OutLayer(d_rnn_out, params.d_fc_out, params.n_targets, dropout=params.linear_dropout)
self.init_weights()
def init_weights(self):
for name, p in self.named_parameters():
if ('lstm' in name and 'ih' in name) and 'bias' not in name:
# print(name)
# print(p.shape)
torch.nn.init.xavier_uniform_(p)
# torch.nn.init.kaiming_normal_(p, a=0, mode='fan_in', nonlinearity='sigmoid')
elif ('lstm' in name and 'hh' in name) and 'bias' not in name:
torch.nn.init.orthogonal_(p)
elif 'lstm' in name and 'bias' in name:
# print(name)
# print(p.shape)
torch.nn.init.zeros_(p)
def get_tft_embeddings(self, regular_inputs):
# Static input
# static_regular_inputs = [self.regular_var_embeddings[i](regular_inputs[:, 0, i:i + 1])
# for i in range(self.hparams.d_in)]
static_regular_inputs = [self.regular_var_embeddings[i](regular_inputs[:, :, i:i + 1]) for i in
range(self.hparams.d_in)]
static_regular_inputs = torch.stack(static_regular_inputs, axis=-1) # .transpose(-2,-1)
return static_regular_inputs
def forward(self, x, x_len, x_static=None):
# code.interact(local=dict(globals(), **locals()))
x = self.get_tft_embeddings(x)
sparse_features, sparse_weights = self.vsn(x)
state_h = self.state_h_grn(sparse_features).mean(axis=1) # .sum(axis =1)
state_c = self.state_c_grn(sparse_features).mean(axis=1) # .sum(axis =1)
# state_h 219(batch)*16(hidden)이어야 한다. -> forward에 static추가하고 이걸로 static variable state를 만들어야겠다.
output_lstm, (state_h, state_c) = self.lstm(sparse_features, (state_h.unsqueeze(0), state_c.unsqueeze(0)))
enriched = self.post_seq_encoder_gate_add_norm(output_lstm, sparse_features)
x, self_att = self.self_attn_layer(enriched, enriched, enriched) # , mask = self.get_decoder_mask(enriched))
# -> self_att -> torch.Size([219, 200, 2, 200]) 왜 두개지?
x = self.out(x)
return self.final_activation(x)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=2000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class TFModel(nn.Module):
def __init__(self, params):
super(TFModel, self).__init__()
self.params = params
self.device = torch.device("cuda")
d_model = params.model_dim
d_rnn_out = params.model_dim * 2 if params.rnn_bi and params.rnn_n_layers > 0 else params.model_dim
self.encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=params.rnn_n_layers,
dropout=params.rnn_dropout)
self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=int(params.rnn_n_layers / 2))
self.pos_encoder = PositionalEncoding(params.model_dim, params.rnn_dropout)
self.encoder = nn.Sequential(
nn.Linear(params.d_in, d_model // 2),
nn.ReLU(),
nn.Linear(d_model // 2, d_model)
)
self.out = OutLayer(d_rnn_out, params.d_fc_out, params.n_targets, dropout=params.linear_dropout)
self.final_activation = ACTIVATION_FUNCTIONS[params.task]()
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, src, src_len):
# code.interact(local=dict(globals(), **locals()))
srcmask = self.generate_square_subsequent_mask(src.shape[1]).to(self.device)
src = self.encoder(src)
# src = self.pos_encoder(src)#old version
src = self.pos_encoder(src.transpose(0, 1)) # transpose before pos_encoder
# output = self.transformer_encoder(src.transpose(0,1), srcmask).transpose(0,1)#original
output = self.transformer_encoder(src, srcmask).transpose(0, 1) # original
# output = self.transformer_encoder(src).transpose(0,1)
output = self.out(output)
output = self.final_activation(output)
# code.interact(local=dict(globals(), **locals()))
return output