-
Notifications
You must be signed in to change notification settings - Fork 5
/
dict.c
1216 lines (1019 loc) · 30 KB
/
dict.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Dictionary Abstract Data Type
* Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
*
* Free Software License:
*
* All rights are reserved by the author, with the following exceptions:
* Permission is granted to freely reproduce and distribute this software,
* possibly in exchange for a fee, provided that this copyright notice appears
* intact. Permission is also granted to adapt this software to produce
* derivative works, as long as the modified versions carry this copyright
* notice and additional notices stating that the work has been modified.
* This source code may be translated into executable form and incorporated
* into proprietary software; there is no requirement for such software to
* contain a copyright notice related to this source.
*
* $Id: dict.c,v 1.15 2005/10/06 05:16:35 kuma Exp $
* $Name: $
*/
/*
* Modified for Ruby/RBTree by OZAWA Takuma.
*/
#include <stdlib.h>
#include <stddef.h>
#include <assert.h>
#include "dict.h"
#include <ruby.h>
#ifdef KAZLIB_RCSID
static const char rcsid[] = "$Id: dict.c,v 1.15 2005/10/06 05:16:35 kuma Exp $";
#endif
/*
* These macros provide short convenient names for structure members,
* which are embellished with dict_ prefixes so that they are
* properly confined to the documented namespace. It's legal for a
* program which uses dict to define, for instance, a macro called ``parent''.
* Such a macro would interfere with the dnode_t struct definition.
* In general, highly portable and reusable C modules which expose their
* structures need to confine structure member names to well-defined spaces.
* The resulting identifiers aren't necessarily convenient to use, nor
* readable, in the implementation, however!
*/
#define left dict_left
#define right dict_right
#define parent dict_parent
#define color dict_color
#define key dict_key
#define data dict_data
#define nilnode dict_nilnode
#define nodecount dict_nodecount
#define compare dict_compare
#define allocnode dict_allocnode
#define freenode dict_freenode
#define context dict_context
#define dupes dict_dupes
#define dictptr dict_dictptr
#define dict_root(D) ((D)->nilnode.left)
#define dict_nil(D) (&(D)->nilnode)
#define DICT_DEPTH_MAX 64
#define COMPARE(dict, key1, key2) dict->compare(key1, key2, dict->context)
static dnode_t *dnode_alloc(void *context);
static void dnode_free(dnode_t *node, void *context);
/*
* Perform a ``left rotation'' adjustment on the tree. The given node P and
* its right child C are rearranged so that the P instead becomes the left
* child of C. The left subtree of C is inherited as the new right subtree
* for P. The ordering of the keys within the tree is thus preserved.
*/
static void rotate_left(dnode_t *upper)
{
dnode_t *lower, *lowleft, *upparent;
lower = upper->right;
upper->right = lowleft = lower->left;
lowleft->parent = upper;
lower->parent = upparent = upper->parent;
/* don't need to check for root node here because root->parent is
the sentinel nil node, and root->parent->left points back to root */
if (upper == upparent->left) {
upparent->left = lower;
} else {
assert (upper == upparent->right);
upparent->right = lower;
}
lower->left = upper;
upper->parent = lower;
}
/*
* This operation is the ``mirror'' image of rotate_left. It is
* the same procedure, but with left and right interchanged.
*/
static void rotate_right(dnode_t *upper)
{
dnode_t *lower, *lowright, *upparent;
lower = upper->left;
upper->left = lowright = lower->right;
lowright->parent = upper;
lower->parent = upparent = upper->parent;
if (upper == upparent->right) {
upparent->right = lower;
} else {
assert (upper == upparent->left);
upparent->left = lower;
}
lower->right = upper;
upper->parent = lower;
}
/*
* Do a postorder traversal of the tree rooted at the specified
* node and free everything under it. Used by dict_free().
*/
static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
{
if (node == nil)
return;
free_nodes(dict, node->left, nil);
free_nodes(dict, node->right, nil);
dict->freenode(node, dict->context);
}
/*
* This procedure performs a verification that the given subtree is a binary
* search tree. It performs an inorder traversal of the tree using the
* dict_next() successor function, verifying that the key of each node is
* strictly lower than that of its successor, if duplicates are not allowed,
* or lower or equal if duplicates are allowed. This function is used for
* debugging purposes.
*/
static int verify_bintree(dict_t *dict)
{
dnode_t *first, *next;
first = dict_first(dict);
if (dict->dupes) {
while (first && (next = dict_next(dict, first))) {
if (COMPARE(dict, first->key, next->key) > 0)
return 0;
first = next;
}
} else {
while (first && (next = dict_next(dict, first))) {
if (COMPARE(dict, first->key, next->key) >= 0)
return 0;
first = next;
}
}
return 1;
}
/*
* This function recursively verifies that the given binary subtree satisfies
* three of the red black properties. It checks that every red node has only
* black children. It makes sure that each node is either red or black. And it
* checks that every path has the same count of black nodes from root to leaf.
* It returns the blackheight of the given subtree; this allows blackheights to
* be computed recursively and compared for left and right siblings for
* mismatches. It does not check for every nil node being black, because there
* is only one sentinel nil node. The return value of this function is the
* black height of the subtree rooted at the node ``root'', or zero if the
* subtree is not red-black.
*/
static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
{
unsigned height_left, height_right;
if (root != nil) {
height_left = verify_redblack(nil, root->left);
height_right = verify_redblack(nil, root->right);
if (height_left == 0 || height_right == 0)
return 0;
if (height_left != height_right)
return 0;
if (root->color == dnode_red) {
if (root->left->color != dnode_black)
return 0;
if (root->right->color != dnode_black)
return 0;
return height_left;
}
if (root->color != dnode_black)
return 0;
return height_left + 1;
}
return 1;
}
/*
* Compute the actual count of nodes by traversing the tree and
* return it. This could be compared against the stored count to
* detect a mismatch.
*/
static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
{
if (root == nil)
return 0;
else
return 1 + verify_node_count(nil, root->left)
+ verify_node_count(nil, root->right);
}
/*
* Verify that the tree contains the given node. This is done by
* traversing all of the nodes and comparing their pointers to the
* given pointer. Returns 1 if the node is found, otherwise
* returns zero. It is intended for debugging purposes.
*/
static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
{
if (root != nil) {
return root == node
|| verify_dict_has_node(nil, root->left, node)
|| verify_dict_has_node(nil, root->right, node);
}
return 0;
}
/*
* Dynamically allocate and initialize a dictionary object.
*/
dict_t *dict_create(dict_comp_t comp)
{
dict_t* new = ALLOC(dict_t);
if (new) {
new->compare = comp;
new->allocnode = dnode_alloc;
new->freenode = dnode_free;
new->context = NULL;
new->nodecount = 0;
new->nilnode.left = &new->nilnode;
new->nilnode.right = &new->nilnode;
new->nilnode.parent = &new->nilnode;
new->nilnode.color = dnode_black;
new->dupes = 0;
}
return new;
}
/*
* Select a different set of node allocator routines.
*/
void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
dnode_free_t fr, void *context)
{
assert (dict_count(dict) == 0);
assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
dict->allocnode = al ? al : dnode_alloc;
dict->freenode = fr ? fr : dnode_free;
dict->context = context;
}
/*
* Free a dynamically allocated dictionary object. Removing the nodes
* from the tree before deleting it is required.
*/
void dict_destroy(dict_t *dict)
{
assert (dict_isempty(dict));
xfree(dict);
}
/*
* Free all the nodes in the dictionary by using the dictionary's
* installed free routine. The dictionary is emptied.
*/
void dict_free_nodes(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
free_nodes(dict, root, nil);
dict->nodecount = 0;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
}
/*
* Obsolescent function, equivalent to dict_free_nodes
*/
void dict_free(dict_t *dict)
{
#ifdef KAZLIB_OBSOLESCENT_DEBUG
assert ("call to obsolescent function dict_free()" && 0);
#endif
dict_free_nodes(dict);
}
/*
* Initialize a user-supplied dictionary object.
*/
dict_t *dict_init(dict_t *dict, dict_comp_t comp)
{
dict->compare = comp;
dict->allocnode = dnode_alloc;
dict->freenode = dnode_free;
dict->context = NULL;
dict->nodecount = 0;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
dict->nilnode.color = dnode_black;
dict->dupes = 0;
return dict;
}
/*
* Initialize a dictionary in the likeness of another dictionary
*/
void dict_init_like(dict_t *dict, const dict_t *template)
{
dict->compare = template->compare;
dict->allocnode = template->allocnode;
dict->freenode = template->freenode;
dict->context = template->context;
dict->nodecount = 0;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
dict->nilnode.color = dnode_black;
dict->dupes = template->dupes;
assert (dict_similar(dict, template));
}
/*
* Remove all nodes from the dictionary (without freeing them in any way).
*/
static void dict_clear(dict_t *dict)
{
dict->nodecount = 0;
dict->nilnode.left = &dict->nilnode;
dict->nilnode.right = &dict->nilnode;
dict->nilnode.parent = &dict->nilnode;
assert (dict->nilnode.color == dnode_black);
}
/*
* Verify the integrity of the dictionary structure. This is provided for
* debugging purposes, and should be placed in assert statements. Just because
* this function succeeds doesn't mean that the tree is not corrupt. Certain
* corruptions in the tree may simply cause undefined behavior.
*/
int dict_verify(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
/* check that the sentinel node and root node are black */
if (root->color != dnode_black)
return 0;
if (nil->color != dnode_black)
return 0;
if (nil->right != nil)
return 0;
/* nil->left is the root node; check that its parent pointer is nil */
if (nil->left->parent != nil)
return 0;
/* perform a weak test that the tree is a binary search tree */
if (!verify_bintree(dict))
return 0;
/* verify that the tree is a red-black tree */
if (!verify_redblack(nil, root))
return 0;
if (verify_node_count(nil, root) != dict_count(dict))
return 0;
return 1;
}
/*
* Determine whether two dictionaries are similar: have the same comparison and
* allocator functions, and same status as to whether duplicates are allowed.
*/
int dict_similar(const dict_t *left, const dict_t *right)
{
if (left->compare != right->compare)
return 0;
if (left->allocnode != right->allocnode)
return 0;
if (left->freenode != right->freenode)
return 0;
if (left->context != right->context)
return 0;
/* if (left->dupes != right->dupes) */
/* return 0; */
return 1;
}
/*
* Locate a node in the dictionary having the given key.
* If the node is not found, a null a pointer is returned (rather than
* a pointer that dictionary's nil sentinel node), otherwise a pointer to the
* located node is returned.
*/
dnode_t *dict_lookup(dict_t *dict, const void *key)
{
dnode_t *root = dict_root(dict);
dnode_t *nil = dict_nil(dict);
dnode_t *saved;
int result;
/* simple binary search adapted for trees that contain duplicate keys */
while (root != nil) {
result = COMPARE(dict, key, root->key);
if (result < 0)
root = root->left;
else if (result > 0)
root = root->right;
else {
if (!dict->dupes) { /* no duplicates, return match */
return root;
} else { /* could be dupes, find leftmost one */
do {
saved = root;
root = root->left;
while (root != nil && COMPARE(dict, key, root->key))
root = root->right;
} while (root != nil);
return saved;
}
}
}
return NULL;
}
/*
* Look for the node corresponding to the lowest key that is equal to or
* greater than the given key. If there is no such node, return null.
*/
dnode_t *dict_lower_bound(dict_t *dict, const void *key)
{
dnode_t *root = dict_root(dict);
dnode_t *nil = dict_nil(dict);
dnode_t *tentative = 0;
while (root != nil) {
int result = COMPARE(dict, key, root->key);
if (result > 0) {
root = root->right;
} else if (result < 0) {
tentative = root;
root = root->left;
} else {
if (!dict->dupes) {
return root;
} else {
tentative = root;
root = root->left;
}
}
}
return tentative;
}
/*
* Look for the node corresponding to the greatest key that is equal to or
* lower than the given key. If there is no such node, return null.
*/
dnode_t *dict_upper_bound(dict_t *dict, const void *key)
{
dnode_t *root = dict_root(dict);
dnode_t *nil = dict_nil(dict);
dnode_t *tentative = 0;
while (root != nil) {
int result = COMPARE(dict, key, root->key);
if (result < 0) {
root = root->left;
} else if (result > 0) {
tentative = root;
root = root->right;
} else {
if (!dict->dupes) {
return root;
} else {
tentative = root;
root = root->right;
}
}
}
return tentative;
}
/*
* Insert a node into the dictionary. The node should have been
* initialized with a data field. All other fields are ignored.
* The behavior is undefined if the user attempts to insert into
* a dictionary that is already full (for which the dict_isfull()
* function returns true).
*/
int dict_insert(dict_t *dict, dnode_t *node, const void *key)
{
dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
dnode_t *parent = nil, *uncle, *grandpa;
int result = -1;
node->key = key;
assert (!dict_isfull(dict));
assert (!dict_contains(dict, node));
assert (!dnode_is_in_a_dict(node));
/* basic binary tree insert */
while (where != nil) {
parent = where;
result = COMPARE(dict, key, where->key);
/* trap attempts at duplicate key insertion unless it's explicitly allowed */
if (!dict->dupes && result == 0) {
where->data = node->data;
return 0;
} else if (result < 0) {
where = where->left;
} else {
where = where->right;
}
}
assert (where == nil);
if (result < 0)
parent->left = node;
else
parent->right = node;
node->parent = parent;
node->left = nil;
node->right = nil;
dict->nodecount++;
/* red black adjustments */
node->color = dnode_red;
while (parent->color == dnode_red) {
grandpa = parent->parent;
if (parent == grandpa->left) {
uncle = grandpa->right;
if (uncle->color == dnode_red) { /* red parent, red uncle */
parent->color = dnode_black;
uncle->color = dnode_black;
grandpa->color = dnode_red;
node = grandpa;
parent = grandpa->parent;
} else { /* red parent, black uncle */
if (node == parent->right) {
rotate_left(parent);
parent = node;
assert (grandpa == parent->parent);
/* rotation between parent and child preserves grandpa */
}
parent->color = dnode_black;
grandpa->color = dnode_red;
rotate_right(grandpa);
break;
}
} else { /* symmetric cases: parent == parent->parent->right */
uncle = grandpa->left;
if (uncle->color == dnode_red) {
parent->color = dnode_black;
uncle->color = dnode_black;
grandpa->color = dnode_red;
node = grandpa;
parent = grandpa->parent;
} else {
if (node == parent->left) {
rotate_right(parent);
parent = node;
assert (grandpa == parent->parent);
}
parent->color = dnode_black;
grandpa->color = dnode_red;
rotate_left(grandpa);
break;
}
}
}
dict_root(dict)->color = dnode_black;
assert (dict_verify(dict));
return 1;
}
/*
* Delete the given node from the dictionary. If the given node does not belong
* to the given dictionary, undefined behavior results. A pointer to the
* deleted node is returned.
*/
dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
{
dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
/* basic deletion */
assert (!dict_isempty(dict));
assert (dict_contains(dict, delete));
/*
* If the node being deleted has two children, then we replace it with its
* successor (i.e. the leftmost node in the right subtree.) By doing this,
* we avoid the traditional algorithm under which the successor's key and
* value *only* move to the deleted node and the successor is spliced out
* from the tree. We cannot use this approach because the user may hold
* pointers to the successor, or nodes may be inextricably tied to some
* other structures by way of embedding, etc. So we must splice out the
* node we are given, not some other node, and must not move contents from
* one node to another behind the user's back.
*/
if (delete->left != nil && delete->right != nil) {
dnode_t *next = dict_next(dict, delete);
dnode_t *nextparent = next->parent;
dnode_color_t nextcolor = next->color;
assert (next != nil);
assert (next->parent != nil);
assert (next->left == nil);
/*
* First, splice out the successor from the tree completely, by
* moving up its right child into its place.
*/
child = next->right;
child->parent = nextparent;
if (nextparent->left == next) {
nextparent->left = child;
} else {
assert (nextparent->right == next);
nextparent->right = child;
}
/*
* Now that the successor has been extricated from the tree, install it
* in place of the node that we want deleted.
*/
next->parent = delparent;
next->left = delete->left;
next->right = delete->right;
next->left->parent = next;
next->right->parent = next;
next->color = delete->color;
delete->color = nextcolor;
if (delparent->left == delete) {
delparent->left = next;
} else {
assert (delparent->right == delete);
delparent->right = next;
}
} else {
assert (delete != nil);
assert (delete->left == nil || delete->right == nil);
child = (delete->left != nil) ? delete->left : delete->right;
child->parent = delparent = delete->parent;
if (delete == delparent->left) {
delparent->left = child;
} else {
assert (delete == delparent->right);
delparent->right = child;
}
}
delete->parent = NULL;
delete->right = NULL;
delete->left = NULL;
dict->nodecount--;
assert (verify_bintree(dict));
/* red-black adjustments */
if (delete->color == dnode_black) {
dnode_t *parent, *sister;
dict_root(dict)->color = dnode_red;
while (child->color == dnode_black) {
parent = child->parent;
if (child == parent->left) {
sister = parent->right;
assert (sister != nil);
if (sister->color == dnode_red) {
sister->color = dnode_black;
parent->color = dnode_red;
rotate_left(parent);
sister = parent->right;
assert (sister != nil);
}
if (sister->left->color == dnode_black
&& sister->right->color == dnode_black) {
sister->color = dnode_red;
child = parent;
} else {
if (sister->right->color == dnode_black) {
assert (sister->left->color == dnode_red);
sister->left->color = dnode_black;
sister->color = dnode_red;
rotate_right(sister);
sister = parent->right;
assert (sister != nil);
}
sister->color = parent->color;
sister->right->color = dnode_black;
parent->color = dnode_black;
rotate_left(parent);
break;
}
} else { /* symmetric case: child == child->parent->right */
assert (child == parent->right);
sister = parent->left;
assert (sister != nil);
if (sister->color == dnode_red) {
sister->color = dnode_black;
parent->color = dnode_red;
rotate_right(parent);
sister = parent->left;
assert (sister != nil);
}
if (sister->right->color == dnode_black
&& sister->left->color == dnode_black) {
sister->color = dnode_red;
child = parent;
} else {
if (sister->left->color == dnode_black) {
assert (sister->right->color == dnode_red);
sister->right->color = dnode_black;
sister->color = dnode_red;
rotate_left(sister);
sister = parent->left;
assert (sister != nil);
}
sister->color = parent->color;
sister->left->color = dnode_black;
parent->color = dnode_black;
rotate_right(parent);
break;
}
}
}
child->color = dnode_black;
dict_root(dict)->color = dnode_black;
}
assert (dict_verify(dict));
return delete;
}
/*
* Allocate a node using the dictionary's allocator routine, give it
* the data item.
*/
int dict_alloc_insert(dict_t *dict, const void *key, void *data)
{
dnode_t *node = dict->allocnode(dict->context);
if (node) {
dnode_init(node, data);
if (!dict_insert(dict, node, key))
dict->freenode(node, dict->context);
return 1;
}
return 0;
}
void dict_delete_free(dict_t *dict, dnode_t *node)
{
dict_delete(dict, node);
dict->freenode(node, dict->context);
}
/*
* Return the node with the lowest (leftmost) key. If the dictionary is empty
* (that is, dict_isempty(dict) returns 1) a null pointer is returned.
*/
dnode_t *dict_first(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
if (root != nil)
while ((left = root->left) != nil)
root = left;
return (root == nil) ? NULL : root;
}
/*
* Return the node with the highest (rightmost) key. If the dictionary is empty
* (that is, dict_isempty(dict) returns 1) a null pointer is returned.
*/
dnode_t *dict_last(dict_t *dict)
{
dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
if (root != nil)
while ((right = root->right) != nil)
root = right;
return (root == nil) ? NULL : root;
}
/*
* Return the given node's successor node---the node which has the
* next key in the the left to right ordering. If the node has
* no successor, a null pointer is returned rather than a pointer to
* the nil node.
*/
dnode_t *dict_next(dict_t *dict, dnode_t *curr)
{
dnode_t *nil = dict_nil(dict), *parent, *left;
if (curr->right != nil) {
curr = curr->right;
while ((left = curr->left) != nil)
curr = left;
return curr;
}
parent = curr->parent;
while (parent != nil && curr == parent->right) {
curr = parent;
parent = curr->parent;
}
return (parent == nil) ? NULL : parent;
}
/*
* Return the given node's predecessor, in the key order.
* The nil sentinel node is returned if there is no predecessor.
*/
dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
{
dnode_t *nil = dict_nil(dict), *parent, *right;
if (curr->left != nil) {
curr = curr->left;
while ((right = curr->right) != nil)
curr = right;
return curr;
}
parent = curr->parent;
while (parent != nil && curr == parent->left) {
curr = parent;
parent = curr->parent;
}
return (parent == nil) ? NULL : parent;
}
void dict_allow_dupes(dict_t *dict)
{
dict->dupes = 1;
}
dictcount_t dict_count(dict_t *dict)
{
return dict->nodecount;
}
int dict_isempty(dict_t *dict)
{
return dict->nodecount == 0;
}
int dict_isfull(dict_t *dict)
{
return dict->nodecount == DICTCOUNT_T_MAX;
}
int dict_contains(dict_t *dict, dnode_t *node)
{
return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
}
static dnode_t *dnode_alloc(void *context)
{
return malloc(sizeof *dnode_alloc(NULL));
}
static void dnode_free(dnode_t *node, void *context)
{
free(node);
}
dnode_t *dnode_create(void *data)
{
dnode_t *new = malloc(sizeof *new);
if (new) {
new->data = data;
new->parent = NULL;
new->left = NULL;
new->right = NULL;
}
return new;
}
dnode_t *dnode_init(dnode_t *dnode, void *data)
{
dnode->data = data;
dnode->parent = NULL;
dnode->left = NULL;
dnode->right = NULL;
return dnode;
}
void dnode_destroy(dnode_t *dnode)
{
assert (!dnode_is_in_a_dict(dnode));
free(dnode);
}
void *dnode_get(dnode_t *dnode)
{
return dnode->data;
}
const void *dnode_getkey(dnode_t *dnode)
{
return dnode->key;
}
void dnode_put(dnode_t *dnode, void *data)
{
dnode->data = data;