forked from jradrion/TEFLoN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathteflon_genotype.py
122 lines (106 loc) · 4.72 KB
/
teflon_genotype.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import argparse, sys, os, gzip
import cPickle as pickle
import gc
teflonBase = os.path.dirname(os.path.abspath(sys.argv[0]))
sys.path.insert(1, teflonBase)
from teflon_scripts import mean_stats as ms
from teflon_scripts import genotyper_poolType as pt
from teflon_scripts import pseudo2refConvert as p2rC
def load_pickle(pFILE):
tmpFILE=pFILE.replace(os.path.basename(pFILE),os.path.basename(pFILE)+".tmp")
cmd="gunzip -c %s > %s" %(pFILE,tmpFILE)
print "cdm:",cmd
os.system(cmd)
print "loading pickle:",tmpFILE
print "NOTE: this step can be time and memory intensive for large reference genomes"
inFILE = open(tmpFILE, "rb")
gc.disable()
pDICT=pickle.load(inFILE)
gc.enable()
inFILE.close()
os.system("rm %s" %(tmpFILE))
print "pickle loaded!"
return pDICT
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-wd',dest='wd',help='full path to working directory', default=-1)
parser.add_argument('-d',dest='DIR',help='full path to prep_TF directory')
parser.add_argument('-s',dest='samples',help='tab delimited text file with full paths to indexed bamFILEs and sorted te positions')
parser.add_argument('-lt',dest='loThresh',help='sites genotyped as -9 if adjusted read counts less than than this threshold (default=1)', type=int, default=-1)
parser.add_argument('-ht',dest='hiThresh',help='sites genotyped as -9 if adjusted read counts greater than this threshold (default=mean_coverage + 2*STDEV)', type=int, default=-1)
parser.add_argument('-dt',dest='dataType',help='haploid, diploid, or pooled')
args = parser.parse_args()
# identify current working directory
if args.wd == -1:
cwd=os.getcwd()
else:
cwd=os.path.abspath(args.wd)
# import options
loFilt=args.loThresh
hiFilt=args.hiThresh
prep_TF=os.path.abspath(args.DIR)
prefix=os.path.abspath(args.DIR).split("/")[-1].replace(".prep_TF","")
dataType=args.dataType
if dataType not in "haploid, diploid, or pooled":
return "Error datatype must be either haploid, diploid, or pooled"
sys.exit()
# read samples and stats
samples=[]
with open(os.path.abspath(args.samples), 'r') as fIN:
for line in fIN:
bamFILE=line.split()[0].replace(".bam",".subsmpl.bam")
statsFile = bamFILE.replace(".bam", ".stats.txt")
with open(statsFile, 'r') as fIN:
for l in fIN:
if 'average length' in l:
readLen=int(float(l.split()[-1]))
if 'insert size average' in l:
insz=int(float(l.split()[-1]))
if 'insert size standard deviation' in l:
sd=int(float(l.split()[-1]))
covFILE = bamFILE.replace(".bam", ".cov.txt")
with open(covFILE, "r") as fIN:
for l in fIN:
if l.startswith("Av"):
cov = float(l.split()[-1])
if l.startswith("St"):
cov_sd = float(l.split()[-1])
samples.append([bamFILE, line.split()[1], [readLen, insz, sd, cov, cov_sd]])
# average the stats for each sample
stats=ms.mean_stats_portal(samples)
# create the genotype directory
countDir = os.path.join(cwd,"countPos")
genoDir = os.path.join(cwd,"genotypes")
# define lower-bound coverage thresholds
if loFilt == -1:
l_thresh=[]
for sample in samples:
l_thresh.append(1)
else:
l_thresh=[]
for sample in samples:
l_thresh.append(loFilt)
print "Lower-bound coverage threshold filters corresponding to samples %s is %s" %([x[1] for x in samples],l_thresh)
print "NOTE: all sites with adjusted read counts > upper-bound coverage threshold will be marked -9"
# define upper-bound coverage threshold
if hiFilt == -1:
h_thresh=[]
for sample in samples:
h_thresh.append(int(sample[2][3]+ (2*sample[2][4])))
else:
h_thresh=[]
for sample in samples:
h_thresh.append(hiFilt)
print "Upper-bound coverage threshold filters corresponding to samples %s is %s" %([x[1] for x in samples],h_thresh)
print "NOTE: all sites with adjusted read counts > upper-bound coverage threshold will be marked -9"
#load pseudo2ref.pickle
pickleFILE=os.path.join(prep_TF,prefix+".pseudo2ref.pickle.gz")
posMap=load_pickle(pickleFILE)
# genotype samples
if dataType == "pooled":
pt.pt_portal(countDir,genoDir,samples, posMap, stats, p2rC, l_thresh, h_thresh)
else:
print """coming soon...use "pooled" to obtain presence and absence read counts"""
print "TEFLON GENOTYPE FINISHED!"
if __name__ == "__main__":
main()