forked from KaiyangZhou/deep-person-reid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnext.py
236 lines (192 loc) · 7.74 KB
/
resnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from __future__ import absolute_import
from __future__ import division
import math
import torch
from torch import nn
from torch.nn import functional as F
import torchvision
import torch.utils.model_zoo as model_zoo
__all__ = ['resnext50_32x4d', 'resnext50_32x4d_fc512']
model_urls = {
# training epoch = 90, top1 = 75.4
'resnext50_32x4d': 'http://www.eecs.qmul.ac.uk/~kz303/deep-person-reid/model-zoo/imagenet-pretrained/resnext50_32x4d-107c7573.pth.tar',
}
class ResNeXtBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, groups=32, base_width=4, stride=1, downsample=None):
super(ResNeXtBottleneck, self).__init__()
width = int(math.floor(planes * (base_width / 64.)) * groups)
self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1)
self.bn1 = nn.BatchNorm2d(width)
self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False)
self.bn2 = nn.BatchNorm2d(width)
self.conv3 = nn.Conv2d(width, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNeXt(nn.Module):
"""
ResNeXt
Reference:
Xie et al. Aggregated Residual Transformations for Deep Neural Networks. CVPR 2017.
"""
def __init__(self, num_classes, loss, block, layers,
groups=32,
base_width=4,
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs):
self.inplanes = 64
super(ResNeXt, self).__init__()
self.loss = loss
self.feature_dim = 512 * block.expansion
# backbone network
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], groups, base_width)
self.layer2 = self._make_layer(block, 128, layers[1], groups, base_width, stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], groups, base_width, stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], groups, base_width, stride=last_stride)
self.global_avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = self._construct_fc_layer(fc_dims, 512 * block.expansion, dropout_p)
self.classifier = nn.Linear(self.feature_dim, num_classes)
self._init_params()
def _make_layer(self, block, planes, blocks, groups, base_width, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, groups, base_width, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, groups, base_width))
return nn.Sequential(*layers)
def _construct_fc_layer(self, fc_dims, input_dim, dropout_p=None):
"""
Construct fully connected layer
- fc_dims (list or tuple): dimensions of fc layers, if None,
no fc layers are constructed
- input_dim (int): input dimension
- dropout_p (float): dropout probability, if None, dropout is unused
"""
if fc_dims is None:
self.feature_dim = input_dim
return None
assert isinstance(fc_dims, (list, tuple)), "fc_dims must be either list or tuple, but got {}".format(type(fc_dims))
layers = []
for dim in fc_dims:
layers.append(nn.Linear(input_dim, dim))
layers.append(nn.BatchNorm1d(dim))
layers.append(nn.ReLU(inplace=True))
if dropout_p is not None:
layers.append(nn.Dropout(p=dropout_p))
input_dim = dim
self.feature_dim = fc_dims[-1]
return nn.Sequential(*layers)
def _init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm1d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def featuremaps(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
return x
def forward(self, x):
f = self.featuremaps(x)
v = self.global_avgpool(f)
v = v.view(v.size(0), -1)
if self.fc is not None:
v = self.fc(v)
if not self.training:
return v
y = self.classifier(v)
if self.loss == {'xent'}:
return y
elif self.loss == {'xent', 'htri'}:
return y, v
else:
raise KeyError("Unsupported loss: {}".format(self.loss))
def init_pretrained_weights(model, model_url):
"""
Initialize model with pretrained weights.
Layers that don't match with pretrained layers in name or size are kept unchanged.
"""
pretrain_dict = model_zoo.load_url(model_url)
model_dict = model.state_dict()
pretrain_dict = {k: v for k, v in pretrain_dict.items() if k in model_dict and model_dict[k].size() == v.size()}
model_dict.update(pretrain_dict)
model.load_state_dict(model_dict)
print("Initialized model with pretrained weights from {}".format(model_url))
def resnext50_32x4d(num_classes, loss, pretrained='imagenet', **kwargs):
model = ResNeXt(
num_classes=num_classes,
loss=loss,
block=ResNeXtBottleneck,
layers=[3, 4, 6, 3],
groups=32,
base_width=4,
last_stride=2,
fc_dims=None,
dropout_p=None,
**kwargs
)
if pretrained == 'imagenet':
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
return model
def resnext50_32x4d_fc512(num_classes, loss, pretrained='imagenet', **kwargs):
model = ResNeXt(
num_classes=num_classes,
loss=loss,
block=ResNeXtBottleneck,
layers=[3, 4, 6, 3],
groups=32,
base_width=4,
last_stride=1,
fc_dims=[512],
dropout_p=None,
**kwargs
)
if pretrained == 'imagenet':
init_pretrained_weights(model, model_urls['resnext50_32x4d'])
return model