-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtypewise_evaluation.py
252 lines (197 loc) · 12.9 KB
/
typewise_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import argparse
import pandas as pd
from lib2to3.pytree import convert
from torch import nn
from torch import optim
import torch.utils.data
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from transformers import BertTokenizer, GPT2Tokenizer
from torch.utils.data import DataLoader
from utils import *
from dataloaders.dataloaderClassification import *
from dataloaders.ClasswisedataloaderGPT2Classification import *
from models.VisualBertClassification import VisualBertClassification
from models.VisualBertResMLPClassification import VisualBertResMLPClassification
from models.EFGPT2Classification import EFVLEGPT2RS18Classification, EFVLEGPT2SwinClassification, EFVLEGPT2ViTClassification
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
'''
Seed randoms
'''
def seed_everything(seed=27):
'''
Set random seed for reproducible experiments
Inputs: seed number
'''
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def validate(args, val_loader, model, criterion, epoch, tokenizer, device):
model.eval()
total_loss = 0.0
label_true = None
label_pred = None
label_score = None
file_names = list()
criterion = nn.CrossEntropyLoss()
with torch.no_grad():
for i, (file_name, v_f, q, labels) in enumerate(val_loader,0):
# prepare questions
questions = []
for question in q: questions.append(question)
if args.model_ver == 'vb' or args.model_ver == 'vbrm':
inputs = tokenizer(questions, return_tensors="pt", padding="max_length", max_length=args.question_len)
elif args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
inputs = tokenizer(questions, padding="max_length",max_length=args.question_len, return_tensors="pt")
# GPU / CPU
# Visual features
if args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
visual_features = v_f
visual_features['pixel_values'] = torch.squeeze(visual_features['pixel_values'],1)
else:
visual_features = v_f.to(device)
# label
labels = labels.to(device)
outputs = model(inputs, visual_features)
loss = criterion(outputs,labels)
total_loss += loss.item()
scores, predicted = torch.max(F.softmax(outputs, dim=1).data, 1)
label_true = labels.data.cpu() if label_true == None else torch.cat((label_true, labels.data.cpu()), 0)
label_pred = predicted.data.cpu() if label_pred == None else torch.cat((label_pred, predicted.data.cpu()), 0)
label_score = scores.data.cpu() if label_score == None else torch.cat((label_score, scores.data.cpu()), 0)
for f in file_name: file_names.append(f)
acc = calc_acc(label_true, label_pred)
c_acc = 0.0
# c_acc = calc_classwise_acc(label_true, label_pred)
precision, recall, fscore = calc_precision_recall_fscore(label_true, label_pred)
print('Test: epoch: %d loss: %.6f | Acc: %.6f | Precision: %.6f | Recall: %.6f | FScore: %.6f' %(epoch, total_loss, acc, precision, recall, fscore))
if args.save_output:
if args.dataset_type == 'c80':
convert_arr = ['no', 'calot triangle dissection', 'yes', '1', '2', 'gallbladder dissection',
'clipping cutting', 'gallbladder retraction', '0', 'cleaning coagulation',
'gallbladder packaging', 'preparation', '3']
elif args.dataset_type == 'm18':
convert_arr = ['kidney', 'Idle', 'Grasping', 'Retraction', 'Tissue_Manipulation',
'Tool_Manipulation', 'Cutting', 'Cauterization', 'Suction',
'Looping', 'Suturing', 'Clipping', 'Staple', 'Ultrasound_Sensing',
'left-top', 'right-top', 'left-bottom', 'right-bottom']
elif args.dataset_type == 'psi':
convert_arr = ["top left", "top right", "bottom left", "bottom right", #location
"Complejo_venoso_dorsal", "Control_Pediculos", "Espacio_de_Retzius", "Fascia_Denonvilliers","Id_Cuello_Vesical",
"LPAD", "LPAI", "Rec_Cuello_Vesical", "Separacion_Prostata_Uretra", "Tiempo_muerto", "Vesículas_Seminales", #phase
"Anudar", "Clip_Pediculos", "Corte", "Corte_Prostata", "Corte_Vejiga", "Diseccion_Denon", "Diseccion_Ganglios_Iliacos",
"Diseccion_Ganglios_Obturadores", "Diseccion_Prevesical", "Diseccion_Prostata", "Diseccion_Seminal", "Empacar_Ganglios",
"Empacar_Prostata", "Halar_sutura", "Id_Vena_Arteria_Iliaca", "Pasar_Aguja_Cuello", "Pasar_Aguja_Cvdp", "Pasar_Aguja_Uretra",
"Succion","Sujetar_Prostata" ]
df = pd.DataFrame(columns=["Img", "Ground Truth", "Prediction"])
for i in range(len(label_true)):
df = df.append({'Img': file_names[i], 'Ground Truth': convert_arr[label_true[i]], 'Prediction': convert_arr[label_pred[i]]}, ignore_index=True)
df.to_csv(args.checkpoint.split('.')[0]+'_eval.csv')
return (acc, c_acc, precision, recall, fscore)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='VisualQuestionAnswerClassification')
#EndoVis-18-VQA
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2rs18 --dataset_type m18 --checkpoint checkpoints/efvlegpt2rs18/m18_2/Best.pth.tar
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2Swin --dataset_type m18 --checkpoint checkpoints/efvlegpt2Swin/m18_2/Best.pth.tar
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2ViT --dataset_type m18 --checkpoint checkpoints/efvlegpt2ViT/m18_2/Best.pth.tar
#Cholec80-VQA
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2rs18 --dataset_type c80 --checkpoint checkpoints/efvlegpt2rs18/c80/Best.pth.tar
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2Swin --dataset_type c80 --checkpoint checkpoints/efvlegpt2Swin/c80/Best.pth.tar
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2ViT --dataset_type c80 --checkpoint checkpoints/efvlegpt2ViT/c80/Best.pth.tar
#PSI-AVA-VQA
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2rs18 --dataset_type psi --checkpoint checkpoints/efvlegpt2rs18/psi/Best.pth.tar
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2Swin --dataset_type psi --checkpoint checkpoints/efvlegpt2Swin/psi/Best.pth.tar
# CUDA_VISIBLE_DEVICES=0 python eval_classification.py --model_ver efvlegpt2ViT --dataset_type psi --checkpoint checkpoints/efvlegpt2ViT/psi/Best.pth.tar
# Training parameters
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--workers', type=int, default=1, help='for data-loading; right now, only 1 works with h5pys.')
# existing checkpoint
parser.add_argument('--checkpoint', default=None, help='path to checkpoint, None if none.')
parser.add_argument('--dataset_type', default= 'm18', help='med_vqa/m18/c80/m18_vid/c80_vid')
parser.add_argument('--class_file', default= None, help='')
parser.add_argument('--dataset_cat', default= '', help='cat1/cat2/cat3')
parser.add_argument('--model_ver', default= None, help='vb/vbrm/efvlegpt2rs18/efvlegpt2Swin/"') #vrvb/gpt2rs18/gpt2ViT/gpt2Swin/biogpt2rs18/vilgpt2vqa/efgpt2rs18gr/efvlegpt2Swingr
parser.add_argument('--tokenizer_ver', default= 'gpt2v1', help='btv2/btv3/gpt2v1')
parser.add_argument('--patch_size', default= 5, help='1/2/3/4/5')
parser.add_argument('--temporal_size', default= 1, help='1/2/3/4/5')
parser.add_argument('--question_len', default= 25, help='25')
parser.add_argument('--num_class', default= 2, help='25')
parser.add_argument('--save_output', default= False, help='True/False')
args = parser.parse_args()
seed_everything()
# GPU or CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # sets device for model and PyTorch tensors
cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
print('device =', device)
# dataset
if args.dataset_type == 'm18':
'''
Train and test dataloader for EndoVis18
'''
# tokenizer
tokenizer = None
if args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v3/bert-EndoVis-18-VQA/', do_lower_case=True)
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# data location
val_seq = [args.class_file] #["dataset/EndoVis-18-VQA/Val/endovis_C1.txt", "dataset/EndoVis-18-VQA/Val/endovis_C2.txt"]
# dataloader
if args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
val_dataset = EndoVis18VQACSGPTClassification(val_seq, model_ver=args.model_ver)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
args.num_class = 18
elif args.dataset_type == 'c80':
'''
Train and test for cholec dataset
'''
# tokenizer
if args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained('./dataset/bertvocab/v3/bert-Cholec80-VQA/', do_lower_case=True)
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# dataloader
val_seq = [args.class_file] #["dataset/Cholec80-VQA/Val/C1_Phase.txt"] # "dataset/Cholec80-VQA/Val/C2_Tool.txt" "dataset/Cholec80-VQA/Val/C3_Count.txt"
# dataloader
if args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
val_dataset = Cholec80VQACSGPTClassification(val_seq, model_ver=args.model_ver)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
args.num_class = 13
elif args.dataset_type == 'psi':
'''
Train and test for psi-ava-vqa dataset
'''
# tokenizer
if args.tokenizer_ver == 'btv3': tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
elif args.tokenizer_ver == 'gpt2v1':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
# dataloader
val_seq = [args.class_file] #["dataset/PSI-AVA-VQA/Val/C1_location.txt", "dataset/PSI-AVA-VQA/Val/C3_phase.txt", "dataset/PSI-AVA-VQA/Val/C4_step.txt"]
# dataloader
if args.model_ver == 'efvlegpt2rs18' or args.model_ver == "efvlegpt2Swin" or args.model_ver == 'efvlegpt2ViT':
val_dataset = PSIAVAVQACSGPTClassification(val_seq, model_ver=args.model_ver)
val_dataloader = DataLoader(dataset=val_dataset, batch_size= args.batch_size, shuffle=False, num_workers=8)
# num_classes
args.num_class = 35 #155 #35
# pre-trained model
checkpoint = torch.load(args.checkpoint, map_location=str(device))
model = checkpoint['model']
epoch = checkpoint['epoch']
# best_Acc = checkpoint['Acc']
# print(model)
# Move to GPU, if available
model = model.to(device)
pytorch_total_params = sum(p.numel() for p in model.parameters())
print('model params: ', pytorch_total_params)
# Loss function
criterion = nn.CrossEntropyLoss().to(device)
# validation
test_acc, test_c_acc, test_precision, test_recall, test_fscore = validate(args, val_loader=val_dataloader, model = model, \
criterion=criterion, epoch=epoch, tokenizer = tokenizer, device = device)