Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

求解释Saliency分数得到的tensor #26

Open
Patrick-Ni opened this issue Jul 23, 2024 · 1 comment
Open

求解释Saliency分数得到的tensor #26

Patrick-Ni opened this issue Jul 23, 2024 · 1 comment

Comments

@Patrick-Ni
Copy link

您好!我参考您的代码,将应用于GPT2的Attentioner Manager应用到Llama上,然后得到了saliency分数,每一层都是[1,1,seq_len,seq_len],部分具体数值如下:
image
我想知道这里每一层的saliency分数的具体含义?
我的代码如下:

class LlamaAttentionManager(AttentionerManagerBase):
    def __init__(self, model: PreTrainedModel):
        super().__init__(model)

    def register_attentioner_to_model(self):
        attention_adapters = []
        for layer in self.model.modules():
            if isinstance(layer, LlamaDecoderLayer):  # 假设解码器层被称为 TransformerDecoderLayer
                # 假设每个解码器层中的注意力模块叫做 self_attention
                attention_adapter = AttentionAdapter()
                layer.self_attn.forward = partial(llama_attn, layer.self_attn, attention_adapter=attention_adapter)
                attention_adapters.append(attention_adapter)
        return attention_adapters
def llama_attn(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        cache_position: Optional[torch.LongTensor] = None,
        attention_adapter=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
    bsz, q_len, _ = hidden_states.size()

    if self.config.pretraining_tp > 1:
        key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
        query_slices = self.q_proj.weight.split(
            (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
        )
        key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
        value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)

        query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
        query_states = torch.cat(query_states, dim=-1)

        key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
        key_states = torch.cat(key_states, dim=-1)

        value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
        value_states = torch.cat(value_states, dim=-1)

    else:
        query_states = self.q_proj(hidden_states)
        key_states = self.k_proj(hidden_states)
        value_states = self.v_proj(hidden_states)

    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)

    cos, sin = self.rotary_emb(value_states, position_ids)
    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

    if past_key_value is not None:
        # sin and cos are specific to RoPE models; cache_position needed for the static cache
        cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)

    key_states = repeat_kv(key_states, self.num_key_value_groups)
    value_states = repeat_kv(value_states, self.num_key_value_groups)

    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

    if attention_mask is not None:  # no matter the length, we just slice it
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    # print(attn_weights.shape)

    if attention_adapter is not None:
        attn_weights = attention_adapter(attn_weights)

    # upcast attention to fp32
    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
    attn_output = torch.matmul(attn_weights, value_states)

    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
        raise ValueError(
            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
            f" {attn_output.size()}"
        )

    attn_output = attn_output.transpose(1, 2).contiguous()

    attn_output = attn_output.reshape(bsz, q_len, -1)

    if self.config.pretraining_tp > 1:
        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
    else:
        attn_output = self.o_proj(attn_output)

    if not output_attentions:
        attn_weights = None

    return attn_output, attn_weights, past_key_value
@leanwang326
Copy link
Collaborator

不好意思忘记回了:这里[1,1,i,j]对应于从j到i的attention的重要性 (|attenion_prob_{i,j} * attenion_prob_{i,j}.grad|)(然后我当时为了处理方便就限制bsz为1了,第二个1是因为对所有head取了平均

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants