-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathchat_models.ts
380 lines (328 loc) Β· 10.3 KB
/
chat_models.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import {
GenerativeModel,
GoogleGenerativeAI as GenerativeAI,
} from "@google/generative-ai";
import type { SafetySetting } from "@google/generative-ai";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import { BaseMessage } from "@langchain/core/messages";
import { ChatGenerationChunk, ChatResult } from "@langchain/core/outputs";
import { getEnvironmentVariable } from "@langchain/core/utils/env";
import {
BaseChatModel,
type BaseChatModelParams,
} from "@langchain/core/language_models/chat_models";
import { NewTokenIndices } from "@langchain/core/callbacks/base";
import {
convertBaseMessagesToContent,
convertResponseContentToChatGenerationChunk,
mapGenerateContentResultToChatResult,
} from "./utils.js";
interface TokenUsage {
completionTokens?: number;
promptTokens?: number;
totalTokens?: number;
}
export type BaseMessageExamplePair = {
input: BaseMessage;
output: BaseMessage;
};
/**
* An interface defining the input to the ChatGoogleGenerativeAI class.
*/
export interface GoogleGenerativeAIChatInput extends BaseChatModelParams {
/**
* Model Name to use
*
* Alias for `model`
*
* Note: The format must follow the pattern - `{model}`
*/
modelName?: string;
/**
* Model Name to use
*
* Note: The format must follow the pattern - `{model}`
*/
model?: string;
/**
* Controls the randomness of the output.
*
* Values can range from [0.0,1.0], inclusive. A value closer to 1.0
* will produce responses that are more varied and creative, while
* a value closer to 0.0 will typically result in less surprising
* responses from the model.
*
* Note: The default value varies by model
*/
temperature?: number;
/**
* Maximum number of tokens to generate in the completion.
*/
maxOutputTokens?: number;
/**
* Top-p changes how the model selects tokens for output.
*
* Tokens are selected from most probable to least until the sum
* of their probabilities equals the top-p value.
*
* For example, if tokens A, B, and C have a probability of
* .3, .2, and .1 and the top-p value is .5, then the model will
* select either A or B as the next token (using temperature).
*
* Note: The default value varies by model
*/
topP?: number;
/**
* Top-k changes how the model selects tokens for output.
*
* A top-k of 1 means the selected token is the most probable among
* all tokens in the modelβs vocabulary (also called greedy decoding),
* while a top-k of 3 means that the next token is selected from
* among the 3 most probable tokens (using temperature).
*
* Note: The default value varies by model
*/
topK?: number;
/**
* The set of character sequences (up to 5) that will stop output generation.
* If specified, the API will stop at the first appearance of a stop
* sequence.
*
* Note: The stop sequence will not be included as part of the response.
* Note: stopSequences is only supported for Gemini models
*/
stopSequences?: string[];
/**
* A list of unique `SafetySetting` instances for blocking unsafe content. The API will block
* any prompts and responses that fail to meet the thresholds set by these settings. If there
* is no `SafetySetting` for a given `SafetyCategory` provided in the list, the API will use
* the default safety setting for that category.
*/
safetySettings?: SafetySetting[];
/**
* Google API key to use
*/
apiKey?: string;
/**
* Google API version to use
*/
apiVersion?: string;
/**
* Google API base URL to use
*/
baseUrl?: string;
/** Whether to stream the results or not */
streaming?: boolean;
}
/**
* A class that wraps the Google Palm chat model.
* @example
* ```typescript
* const model = new ChatGoogleGenerativeAI({
* apiKey: "<YOUR API KEY>",
* temperature: 0.7,
* modelName: "gemini-pro",
* topK: 40,
* topP: 1,
* });
* const questions = [
* new HumanMessage({
* content: [
* {
* type: "text",
* text: "You are a funny assistant that answers in pirate language.",
* },
* {
* type: "text",
* text: "What is your favorite food?",
* },
* ]
* })
* ];
* const res = await model.invoke(questions);
* console.log({ res });
* ```
*/
export class ChatGoogleGenerativeAI
extends BaseChatModel
implements GoogleGenerativeAIChatInput
{
static lc_name() {
return "googlegenerativeai";
}
lc_serializable = true;
get lc_secrets(): { [key: string]: string } | undefined {
return {
apiKey: "GOOGLE_API_KEY",
};
}
modelName = "gemini-pro";
model = "gemini-pro";
temperature?: number; // default value chosen based on model
maxOutputTokens?: number;
topP?: number; // default value chosen based on model
topK?: number; // default value chosen based on model
stopSequences: string[] = [];
safetySettings?: SafetySetting[];
apiKey?: string;
apiVersion?: string = "v1";
baseUrl?: string = "https://generativeai.googleapis.com";
streaming = false;
private client: GenerativeModel;
get _isMultimodalModel() {
return this.model.includes("vision") || this.model.startsWith("gemini-1.5");
}
constructor(fields?: GoogleGenerativeAIChatInput) {
super(fields ?? {});
this.modelName =
fields?.model?.replace(/^models\//, "") ??
fields?.modelName?.replace(/^models\//, "") ??
this.model;
this.model = this.modelName;
this.maxOutputTokens = fields?.maxOutputTokens ?? this.maxOutputTokens;
if (this.maxOutputTokens && this.maxOutputTokens < 0) {
throw new Error("`maxOutputTokens` must be a positive integer");
}
this.temperature = fields?.temperature ?? this.temperature;
if (this.temperature && (this.temperature < 0 || this.temperature > 1)) {
throw new Error("`temperature` must be in the range of [0.0,1.0]");
}
this.topP = fields?.topP ?? this.topP;
if (this.topP && this.topP < 0) {
throw new Error("`topP` must be a positive integer");
}
if (this.topP && this.topP > 1) {
throw new Error("`topP` must be below 1.");
}
this.topK = fields?.topK ?? this.topK;
if (this.topK && this.topK < 0) {
throw new Error("`topK` must be a positive integer");
}
this.stopSequences = fields?.stopSequences ?? this.stopSequences;
this.apiKey = fields?.apiKey ?? getEnvironmentVariable("GOOGLE_API_KEY");
if (!this.apiKey) {
throw new Error(
"Please set an API key for Google GenerativeAI " +
"in the environment variable GOOGLE_API_KEY " +
"or in the `apiKey` field of the " +
"ChatGoogleGenerativeAI constructor"
);
}
this.safetySettings = fields?.safetySettings ?? this.safetySettings;
if (this.safetySettings && this.safetySettings.length > 0) {
const safetySettingsSet = new Set(
this.safetySettings.map((s) => s.category)
);
if (safetySettingsSet.size !== this.safetySettings.length) {
throw new Error(
"The categories in `safetySettings` array must be unique"
);
}
}
this.streaming = fields?.streaming ?? this.streaming;
this.client = new GenerativeAI(this.apiKey).getGenerativeModel(
{
model: this.model,
safetySettings: this.safetySettings as SafetySetting[],
generationConfig: {
candidateCount: 1,
stopSequences: this.stopSequences,
maxOutputTokens: this.maxOutputTokens,
temperature: this.temperature,
topP: this.topP,
topK: this.topK,
},
},
{
apiVersion: this.apiVersion,
baseUrl: this.baseUrl,
}
);
}
_combineLLMOutput() {
return [];
}
_llmType() {
return "googlegenerativeai";
}
async _generate(
messages: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): Promise<ChatResult> {
const prompt = convertBaseMessagesToContent(
messages,
this._isMultimodalModel
);
// Handle streaming
if (this.streaming) {
const tokenUsage: TokenUsage = {};
const stream = this._streamResponseChunks(messages, options, runManager);
const finalChunks: Record<number, ChatGenerationChunk> = {};
for await (const chunk of stream) {
const index =
(chunk.generationInfo as NewTokenIndices)?.completion ?? 0;
if (finalChunks[index] === undefined) {
finalChunks[index] = chunk;
} else {
finalChunks[index] = finalChunks[index].concat(chunk);
}
}
const generations = Object.entries(finalChunks)
.sort(([aKey], [bKey]) => parseInt(aKey, 10) - parseInt(bKey, 10))
.map(([_, value]) => value);
return { generations, llmOutput: { estimatedTokenUsage: tokenUsage } };
}
const res = await this.caller.callWithOptions(
{ signal: options?.signal },
async () => {
let output;
try {
output = await this.client.generateContent({
contents: prompt,
});
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} catch (e: any) {
// TODO: Improve error handling
if (e.message?.includes("400 Bad Request")) {
e.status = 400;
}
throw e;
}
return output;
}
);
const generationResult = mapGenerateContentResultToChatResult(res.response);
await runManager?.handleLLMNewToken(
generationResult.generations[0].text ?? ""
);
return generationResult;
}
async *_streamResponseChunks(
messages: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
const prompt = convertBaseMessagesToContent(
messages,
this._isMultimodalModel
);
const stream = await this.caller.callWithOptions(
{ signal: options?.signal },
async () => {
const { stream } = await this.client.generateContentStream({
contents: prompt,
});
return stream;
}
);
for await (const response of stream) {
const chunk = convertResponseContentToChatGenerationChunk(response);
if (!chunk) {
continue;
}
yield chunk;
await runManager?.handleLLMNewToken(chunk.text ?? "");
}
}
}