-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
chat_models.ts
1057 lines (982 loc) Β· 31.2 KB
/
chat_models.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import {
GenerativeModel,
GoogleGenerativeAI as GenerativeAI,
FunctionDeclarationsTool as GoogleGenerativeAIFunctionDeclarationsTool,
FunctionDeclaration as GenerativeAIFunctionDeclaration,
type FunctionDeclarationSchema as GenerativeAIFunctionDeclarationSchema,
GenerateContentRequest,
SafetySetting,
Part as GenerativeAIPart,
ModelParams,
RequestOptions,
type CachedContent,
} from "@google/generative-ai";
import { CallbackManagerForLLMRun } from "@langchain/core/callbacks/manager";
import {
AIMessageChunk,
BaseMessage,
UsageMetadata,
} from "@langchain/core/messages";
import { ChatGenerationChunk, ChatResult } from "@langchain/core/outputs";
import { getEnvironmentVariable } from "@langchain/core/utils/env";
import {
BaseChatModel,
type BaseChatModelCallOptions,
type LangSmithParams,
type BaseChatModelParams,
} from "@langchain/core/language_models/chat_models";
import { NewTokenIndices } from "@langchain/core/callbacks/base";
import {
BaseLanguageModelInput,
StructuredOutputMethodOptions,
} from "@langchain/core/language_models/base";
import {
Runnable,
RunnablePassthrough,
RunnableSequence,
} from "@langchain/core/runnables";
import type { z } from "zod";
import { isZodSchema } from "@langchain/core/utils/types";
import { BaseLLMOutputParser } from "@langchain/core/output_parsers";
import { zodToGenerativeAIParameters } from "./utils/zod_to_genai_parameters.js";
import {
convertBaseMessagesToContent,
convertResponseContentToChatGenerationChunk,
mapGenerateContentResultToChatResult,
} from "./utils/common.js";
import { GoogleGenerativeAIToolsOutputParser } from "./output_parsers.js";
import { GoogleGenerativeAIToolType } from "./types.js";
import { convertToolsToGenAI } from "./utils/tools.js";
interface TokenUsage {
completionTokens?: number;
promptTokens?: number;
totalTokens?: number;
}
export type BaseMessageExamplePair = {
input: BaseMessage;
output: BaseMessage;
};
export interface GoogleGenerativeAIChatCallOptions
extends BaseChatModelCallOptions {
tools?: GoogleGenerativeAIToolType[];
/**
* Allowed functions to call when the mode is "any".
* If empty, any one of the provided functions are called.
*/
allowedFunctionNames?: string[];
/**
* Whether or not to include usage data, like token counts
* in the streamed response chunks.
* @default true
*/
streamUsage?: boolean;
}
/**
* An interface defining the input to the ChatGoogleGenerativeAI class.
*/
export interface GoogleGenerativeAIChatInput
extends BaseChatModelParams,
Pick<GoogleGenerativeAIChatCallOptions, "streamUsage"> {
/**
* @deprecated Use "model" instead.
*
* Model Name to use
*
* Alias for `model`
*
* Note: The format must follow the pattern - `{model}`
*/
modelName?: string;
/**
* Model Name to use
*
* Note: The format must follow the pattern - `{model}`
*/
model?: string;
/**
* Controls the randomness of the output.
*
* Values can range from [0.0,1.0], inclusive. A value closer to 1.0
* will produce responses that are more varied and creative, while
* a value closer to 0.0 will typically result in less surprising
* responses from the model.
*
* Note: The default value varies by model
*/
temperature?: number;
/**
* Maximum number of tokens to generate in the completion.
*/
maxOutputTokens?: number;
/**
* Top-p changes how the model selects tokens for output.
*
* Tokens are selected from most probable to least until the sum
* of their probabilities equals the top-p value.
*
* For example, if tokens A, B, and C have a probability of
* .3, .2, and .1 and the top-p value is .5, then the model will
* select either A or B as the next token (using temperature).
*
* Note: The default value varies by model
*/
topP?: number;
/**
* Top-k changes how the model selects tokens for output.
*
* A top-k of 1 means the selected token is the most probable among
* all tokens in the modelβs vocabulary (also called greedy decoding),
* while a top-k of 3 means that the next token is selected from
* among the 3 most probable tokens (using temperature).
*
* Note: The default value varies by model
*/
topK?: number;
/**
* The set of character sequences (up to 5) that will stop output generation.
* If specified, the API will stop at the first appearance of a stop
* sequence.
*
* Note: The stop sequence will not be included as part of the response.
* Note: stopSequences is only supported for Gemini models
*/
stopSequences?: string[];
/**
* A list of unique `SafetySetting` instances for blocking unsafe content. The API will block
* any prompts and responses that fail to meet the thresholds set by these settings. If there
* is no `SafetySetting` for a given `SafetyCategory` provided in the list, the API will use
* the default safety setting for that category.
*/
safetySettings?: SafetySetting[];
/**
* Google API key to use
*/
apiKey?: string;
/**
* Google API version to use
*/
apiVersion?: string;
/**
* Google API base URL to use
*/
baseUrl?: string;
/** Whether to stream the results or not */
streaming?: boolean;
/**
* Whether or not to force the model to respond with JSON.
* Available for `gemini-1.5` models and later.
* @default false
*/
json?: boolean;
/**
* Whether or not model supports system instructions.
* The following models support system instructions:
* - All Gemini 1.5 Pro model versions
* - All Gemini 1.5 Flash model versions
* - Gemini 1.0 Pro version gemini-1.0-pro-002
*/
convertSystemMessageToHumanContent?: boolean | undefined;
}
/**
* Google Generative AI chat model integration.
*
* Setup:
* Install `@langchain/google-genai` and set an environment variable named `GOOGLE_API_KEY`.
*
* ```bash
* npm install @langchain/google-genai
* export GOOGLE_API_KEY="your-api-key"
* ```
*
* ## [Constructor args](https://api.js.langchain.com/classes/langchain_google_genai.ChatGoogleGenerativeAI.html#constructor)
*
* ## [Runtime args](https://api.js.langchain.com/interfaces/langchain_google_genai.GoogleGenerativeAIChatCallOptions.html)
*
* Runtime args can be passed as the second argument to any of the base runnable methods `.invoke`. `.stream`, `.batch`, etc.
* They can also be passed via `.bind`, or the second arg in `.bindTools`, like shown in the examples below:
*
* ```typescript
* // When calling `.bind`, call options should be passed via the first argument
* const llmWithArgsBound = llm.bind({
* stop: ["\n"],
* tools: [...],
* });
*
* // When calling `.bindTools`, call options should be passed via the second argument
* const llmWithTools = llm.bindTools(
* [...],
* {
* stop: ["\n"],
* }
* );
* ```
*
* ## Examples
*
* <details open>
* <summary><strong>Instantiate</strong></summary>
*
* ```typescript
* import { ChatGoogleGenerativeAI } from '@langchain/google-genai';
*
* const llm = new ChatGoogleGenerativeAI({
* model: "gemini-1.5-flash",
* temperature: 0,
* maxRetries: 2,
* // apiKey: "...",
* // other params...
* });
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Invoking</strong></summary>
*
* ```typescript
* const input = `Translate "I love programming" into French.`;
*
* // Models also accept a list of chat messages or a formatted prompt
* const result = await llm.invoke(input);
* console.log(result);
* ```
*
* ```txt
* AIMessage {
* "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup dΓ©velopper des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
* "response_metadata": {
* "finishReason": "STOP",
* "index": 0,
* "safetyRatings": [
* {
* "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
* "probability": "NEGLIGIBLE"
* },
* {
* "category": "HARM_CATEGORY_HATE_SPEECH",
* "probability": "NEGLIGIBLE"
* },
* {
* "category": "HARM_CATEGORY_HARASSMENT",
* "probability": "NEGLIGIBLE"
* },
* {
* "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
* "probability": "NEGLIGIBLE"
* }
* ]
* },
* "usage_metadata": {
* "input_tokens": 10,
* "output_tokens": 149,
* "total_tokens": 159
* }
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Streaming Chunks</strong></summary>
*
* ```typescript
* for await (const chunk of await llm.stream(input)) {
* console.log(chunk);
* }
* ```
*
* ```txt
* AIMessageChunk {
* "content": "There",
* "response_metadata": {
* "index": 0
* }
* "usage_metadata": {
* "input_tokens": 10,
* "output_tokens": 1,
* "total_tokens": 11
* }
* }
* AIMessageChunk {
* "content": " are a few ways to translate \"I love programming\" into French, depending on",
* }
* AIMessageChunk {
* "content": " the level of formality and nuance you want to convey:\n\n**Formal:**\n\n",
* }
* AIMessageChunk {
* "content": "* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This",
* }
* AIMessageChunk {
* "content": " is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More",
* }
* AIMessageChunk {
* "content": " specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup dΓ©velopper des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and",
* }
* AIMessageChunk {
* "content": " your intended audience. \n",
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Aggregate Streamed Chunks</strong></summary>
*
* ```typescript
* import { AIMessageChunk } from '@langchain/core/messages';
* import { concat } from '@langchain/core/utils/stream';
*
* const stream = await llm.stream(input);
* let full: AIMessageChunk | undefined;
* for await (const chunk of stream) {
* full = !full ? chunk : concat(full, chunk);
* }
* console.log(full);
* ```
*
* ```txt
* AIMessageChunk {
* "content": "There are a few ways to translate \"I love programming\" into French, depending on the level of formality and nuance you want to convey:\n\n**Formal:**\n\n* **J'aime la programmation.** (This is the most literal and formal translation.)\n\n**Informal:**\n\n* **J'adore programmer.** (This is a more enthusiastic and informal translation.)\n* **J'aime beaucoup programmer.** (This is a slightly less enthusiastic but still informal translation.)\n\n**More specific:**\n\n* **J'aime beaucoup coder.** (This specifically refers to writing code.)\n* **J'aime beaucoup dΓ©velopper des logiciels.** (This specifically refers to developing software.)\n\nThe best translation will depend on the context and your intended audience. \n",
* "usage_metadata": {
* "input_tokens": 10,
* "output_tokens": 277,
* "total_tokens": 287
* }
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Bind tools</strong></summary>
*
* ```typescript
* import { z } from 'zod';
*
* const GetWeather = {
* name: "GetWeather",
* description: "Get the current weather in a given location",
* schema: z.object({
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
* }),
* }
*
* const GetPopulation = {
* name: "GetPopulation",
* description: "Get the current population in a given location",
* schema: z.object({
* location: z.string().describe("The city and state, e.g. San Francisco, CA")
* }),
* }
*
* const llmWithTools = llm.bindTools([GetWeather, GetPopulation]);
* const aiMsg = await llmWithTools.invoke(
* "Which city is hotter today and which is bigger: LA or NY?"
* );
* console.log(aiMsg.tool_calls);
* ```
*
* ```txt
* [
* {
* name: 'GetWeather',
* args: { location: 'Los Angeles, CA' },
* type: 'tool_call'
* },
* {
* name: 'GetWeather',
* args: { location: 'New York, NY' },
* type: 'tool_call'
* },
* {
* name: 'GetPopulation',
* args: { location: 'Los Angeles, CA' },
* type: 'tool_call'
* },
* {
* name: 'GetPopulation',
* args: { location: 'New York, NY' },
* type: 'tool_call'
* }
* ]
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Structured Output</strong></summary>
*
* ```typescript
* const Joke = z.object({
* setup: z.string().describe("The setup of the joke"),
* punchline: z.string().describe("The punchline to the joke"),
* rating: z.number().optional().describe("How funny the joke is, from 1 to 10")
* }).describe('Joke to tell user.');
*
* const structuredLlm = llm.withStructuredOutput(Joke, { name: "Joke" });
* const jokeResult = await structuredLlm.invoke("Tell me a joke about cats");
* console.log(jokeResult);
* ```
*
* ```txt
* {
* setup: "Why don\\'t cats play poker?",
* punchline: "Why don\\'t cats play poker? Because they always have an ace up their sleeve!"
* }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Multimodal</strong></summary>
*
* ```typescript
* import { HumanMessage } from '@langchain/core/messages';
*
* const imageUrl = "https://example.com/image.jpg";
* const imageData = await fetch(imageUrl).then(res => res.arrayBuffer());
* const base64Image = Buffer.from(imageData).toString('base64');
*
* const message = new HumanMessage({
* content: [
* { type: "text", text: "describe the weather in this image" },
* {
* type: "image_url",
* image_url: { url: `data:image/jpeg;base64,${base64Image}` },
* },
* ]
* });
*
* const imageDescriptionAiMsg = await llm.invoke([message]);
* console.log(imageDescriptionAiMsg.content);
* ```
*
* ```txt
* The weather in the image appears to be clear and sunny. The sky is mostly blue with a few scattered white clouds, indicating fair weather. The bright sunlight is casting shadows on the green, grassy hill, suggesting it is a pleasant day with good visibility. There are no signs of rain or stormy conditions.
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Usage Metadata</strong></summary>
*
* ```typescript
* const aiMsgForMetadata = await llm.invoke(input);
* console.log(aiMsgForMetadata.usage_metadata);
* ```
*
* ```txt
* { input_tokens: 10, output_tokens: 149, total_tokens: 159 }
* ```
* </details>
*
* <br />
*
* <details>
* <summary><strong>Response Metadata</strong></summary>
*
* ```typescript
* const aiMsgForResponseMetadata = await llm.invoke(input);
* console.log(aiMsgForResponseMetadata.response_metadata);
* ```
*
* ```txt
* {
* finishReason: 'STOP',
* index: 0,
* safetyRatings: [
* {
* category: 'HARM_CATEGORY_SEXUALLY_EXPLICIT',
* probability: 'NEGLIGIBLE'
* },
* {
* category: 'HARM_CATEGORY_HATE_SPEECH',
* probability: 'NEGLIGIBLE'
* },
* { category: 'HARM_CATEGORY_HARASSMENT', probability: 'NEGLIGIBLE' },
* {
* category: 'HARM_CATEGORY_DANGEROUS_CONTENT',
* probability: 'NEGLIGIBLE'
* }
* ]
* }
* ```
* </details>
*
* <br />
*/
export class ChatGoogleGenerativeAI
extends BaseChatModel<GoogleGenerativeAIChatCallOptions, AIMessageChunk>
implements GoogleGenerativeAIChatInput
{
static lc_name() {
return "ChatGoogleGenerativeAI";
}
lc_serializable = true;
get lc_secrets(): { [key: string]: string } | undefined {
return {
apiKey: "GOOGLE_API_KEY",
};
}
lc_namespace = ["langchain", "chat_models", "google_genai"];
get lc_aliases() {
return {
apiKey: "google_api_key",
};
}
modelName = "gemini-pro";
model = "gemini-pro";
temperature?: number; // default value chosen based on model
maxOutputTokens?: number;
topP?: number; // default value chosen based on model
topK?: number; // default value chosen based on model
stopSequences: string[] = [];
safetySettings?: SafetySetting[];
apiKey?: string;
streaming = false;
streamUsage = true;
convertSystemMessageToHumanContent: boolean | undefined;
private client: GenerativeModel;
get _isMultimodalModel() {
return (
this.model.includes("vision") ||
this.model.startsWith("gemini-1.5") ||
this.model.startsWith("gemini-2")
);
}
constructor(fields?: GoogleGenerativeAIChatInput) {
super(fields ?? {});
this.modelName =
fields?.model?.replace(/^models\//, "") ??
fields?.modelName?.replace(/^models\//, "") ??
this.model;
this.model = this.modelName;
this.maxOutputTokens = fields?.maxOutputTokens ?? this.maxOutputTokens;
if (this.maxOutputTokens && this.maxOutputTokens < 0) {
throw new Error("`maxOutputTokens` must be a positive integer");
}
this.temperature = fields?.temperature ?? this.temperature;
if (this.temperature && (this.temperature < 0 || this.temperature > 1)) {
throw new Error("`temperature` must be in the range of [0.0,1.0]");
}
this.topP = fields?.topP ?? this.topP;
if (this.topP && this.topP < 0) {
throw new Error("`topP` must be a positive integer");
}
if (this.topP && this.topP > 1) {
throw new Error("`topP` must be below 1.");
}
this.topK = fields?.topK ?? this.topK;
if (this.topK && this.topK < 0) {
throw new Error("`topK` must be a positive integer");
}
this.stopSequences = fields?.stopSequences ?? this.stopSequences;
this.apiKey = fields?.apiKey ?? getEnvironmentVariable("GOOGLE_API_KEY");
if (!this.apiKey) {
throw new Error(
"Please set an API key for Google GenerativeAI " +
"in the environment variable GOOGLE_API_KEY " +
"or in the `apiKey` field of the " +
"ChatGoogleGenerativeAI constructor"
);
}
this.safetySettings = fields?.safetySettings ?? this.safetySettings;
if (this.safetySettings && this.safetySettings.length > 0) {
const safetySettingsSet = new Set(
this.safetySettings.map((s) => s.category)
);
if (safetySettingsSet.size !== this.safetySettings.length) {
throw new Error(
"The categories in `safetySettings` array must be unique"
);
}
}
this.streaming = fields?.streaming ?? this.streaming;
this.client = new GenerativeAI(this.apiKey).getGenerativeModel(
{
model: this.model,
safetySettings: this.safetySettings as SafetySetting[],
generationConfig: {
candidateCount: 1,
stopSequences: this.stopSequences,
maxOutputTokens: this.maxOutputTokens,
temperature: this.temperature,
topP: this.topP,
topK: this.topK,
...(fields?.json ? { responseMimeType: "application/json" } : {}),
},
},
{
apiVersion: fields?.apiVersion,
baseUrl: fields?.baseUrl,
}
);
this.streamUsage = fields?.streamUsage ?? this.streamUsage;
}
useCachedContent(
cachedContent: CachedContent,
modelParams?: ModelParams,
requestOptions?: RequestOptions
): void {
if (!this.apiKey) return;
this.client = new GenerativeAI(
this.apiKey
).getGenerativeModelFromCachedContent(
cachedContent,
modelParams,
requestOptions
);
}
get useSystemInstruction(): boolean {
return typeof this.convertSystemMessageToHumanContent === "boolean"
? !this.convertSystemMessageToHumanContent
: this.computeUseSystemInstruction;
}
get computeUseSystemInstruction(): boolean {
// This works on models from April 2024 and later
// Vertex AI: gemini-1.5-pro and gemini-1.0-002 and later
// AI Studio: gemini-1.5-pro-latest
if (this.modelName === "gemini-1.0-pro-001") {
return false;
} else if (this.modelName.startsWith("gemini-pro-vision")) {
return false;
} else if (this.modelName.startsWith("gemini-1.0-pro-vision")) {
return false;
} else if (this.modelName === "gemini-pro") {
// on AI Studio gemini-pro is still pointing at gemini-1.0-pro-001
return false;
}
return true;
}
getLsParams(options: this["ParsedCallOptions"]): LangSmithParams {
return {
ls_provider: "google_genai",
ls_model_name: this.model,
ls_model_type: "chat",
ls_temperature: this.client.generationConfig.temperature,
ls_max_tokens: this.client.generationConfig.maxOutputTokens,
ls_stop: options.stop,
};
}
_combineLLMOutput() {
return [];
}
_llmType() {
return "googlegenerativeai";
}
override bindTools(
tools: GoogleGenerativeAIToolType[],
kwargs?: Partial<GoogleGenerativeAIChatCallOptions>
): Runnable<
BaseLanguageModelInput,
AIMessageChunk,
GoogleGenerativeAIChatCallOptions
> {
return this.bind({ tools: convertToolsToGenAI(tools)?.tools, ...kwargs });
}
invocationParams(
options?: this["ParsedCallOptions"]
): Omit<GenerateContentRequest, "contents"> {
const toolsAndConfig = options?.tools?.length
? convertToolsToGenAI(options.tools, {
toolChoice: options.tool_choice,
allowedFunctionNames: options.allowedFunctionNames,
})
: undefined;
return {
...(toolsAndConfig?.tools ? { tools: toolsAndConfig.tools } : {}),
...(toolsAndConfig?.toolConfig
? { toolConfig: toolsAndConfig.toolConfig }
: {}),
};
}
async _generate(
messages: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): Promise<ChatResult> {
const prompt = convertBaseMessagesToContent(
messages,
this._isMultimodalModel,
this.useSystemInstruction
);
let actualPrompt = prompt;
if (prompt[0].role === "system") {
const [systemInstruction] = prompt;
this.client.systemInstruction = systemInstruction;
actualPrompt = prompt.slice(1);
}
const parameters = this.invocationParams(options);
// Handle streaming
if (this.streaming) {
const tokenUsage: TokenUsage = {};
const stream = this._streamResponseChunks(messages, options, runManager);
const finalChunks: Record<number, ChatGenerationChunk> = {};
for await (const chunk of stream) {
const index =
(chunk.generationInfo as NewTokenIndices)?.completion ?? 0;
if (finalChunks[index] === undefined) {
finalChunks[index] = chunk;
} else {
finalChunks[index] = finalChunks[index].concat(chunk);
}
}
const generations = Object.entries(finalChunks)
.sort(([aKey], [bKey]) => parseInt(aKey, 10) - parseInt(bKey, 10))
.map(([_, value]) => value);
return { generations, llmOutput: { estimatedTokenUsage: tokenUsage } };
}
const res = await this.completionWithRetry({
...parameters,
contents: actualPrompt,
});
let usageMetadata: UsageMetadata | undefined;
if ("usageMetadata" in res.response) {
const genAIUsageMetadata = res.response.usageMetadata as {
promptTokenCount: number | undefined;
candidatesTokenCount: number | undefined;
totalTokenCount: number | undefined;
};
usageMetadata = {
input_tokens: genAIUsageMetadata.promptTokenCount ?? 0,
output_tokens: genAIUsageMetadata.candidatesTokenCount ?? 0,
total_tokens: genAIUsageMetadata.totalTokenCount ?? 0,
};
}
const generationResult = mapGenerateContentResultToChatResult(
res.response,
{
usageMetadata,
}
);
await runManager?.handleLLMNewToken(
generationResult.generations[0].text ?? ""
);
return generationResult;
}
async *_streamResponseChunks(
messages: BaseMessage[],
options: this["ParsedCallOptions"],
runManager?: CallbackManagerForLLMRun
): AsyncGenerator<ChatGenerationChunk> {
const prompt = convertBaseMessagesToContent(
messages,
this._isMultimodalModel,
this.useSystemInstruction
);
let actualPrompt = prompt;
if (prompt[0].role === "system") {
const [systemInstruction] = prompt;
this.client.systemInstruction = systemInstruction;
actualPrompt = prompt.slice(1);
}
const parameters = this.invocationParams(options);
const request = {
...parameters,
contents: actualPrompt,
};
const stream = await this.caller.callWithOptions(
{ signal: options?.signal },
async () => {
const { stream } = await this.client.generateContentStream(request);
return stream;
}
);
let usageMetadata: UsageMetadata | undefined;
let index = 0;
for await (const response of stream) {
if (
"usageMetadata" in response &&
this.streamUsage !== false &&
options.streamUsage !== false
) {
const genAIUsageMetadata = response.usageMetadata as {
promptTokenCount: number;
candidatesTokenCount: number;
totalTokenCount: number;
};
if (!usageMetadata) {
usageMetadata = {
input_tokens: genAIUsageMetadata.promptTokenCount,
output_tokens: genAIUsageMetadata.candidatesTokenCount,
total_tokens: genAIUsageMetadata.totalTokenCount,
};
} else {
// Under the hood, LangChain combines the prompt tokens. Google returns the updated
// total each time, so we need to find the difference between the tokens.
const outputTokenDiff =
genAIUsageMetadata.candidatesTokenCount -
usageMetadata.output_tokens;
usageMetadata = {
input_tokens: 0,
output_tokens: outputTokenDiff,
total_tokens: outputTokenDiff,
};
}
}
const chunk = convertResponseContentToChatGenerationChunk(response, {
usageMetadata,
index,
});
index += 1;
if (!chunk) {
continue;
}
yield chunk;
await runManager?.handleLLMNewToken(chunk.text ?? "");
}
}
async completionWithRetry(
request: string | GenerateContentRequest | (string | GenerativeAIPart)[],
options?: this["ParsedCallOptions"]
) {
return this.caller.callWithOptions(
{ signal: options?.signal },
async () => {
try {
return await this.client.generateContent(request);
// eslint-disable-next-line @typescript-eslint/no-explicit-any
} catch (e: any) {
// TODO: Improve error handling
if (e.message?.includes("400 Bad Request")) {
e.status = 400;
}
throw e;
}
}
);
}
withStructuredOutput<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunOutput extends Record<string, any> = Record<string, any>
>(
outputSchema:
| z.ZodType<RunOutput>
// eslint-disable-next-line @typescript-eslint/no-explicit-any
| Record<string, any>,
config?: StructuredOutputMethodOptions<false>
): Runnable<BaseLanguageModelInput, RunOutput>;
withStructuredOutput<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunOutput extends Record<string, any> = Record<string, any>
>(
outputSchema:
| z.ZodType<RunOutput>
// eslint-disable-next-line @typescript-eslint/no-explicit-any
| Record<string, any>,
config?: StructuredOutputMethodOptions<true>
): Runnable<BaseLanguageModelInput, { raw: BaseMessage; parsed: RunOutput }>;
withStructuredOutput<
// eslint-disable-next-line @typescript-eslint/no-explicit-any
RunOutput extends Record<string, any> = Record<string, any>
>(
outputSchema:
| z.ZodType<RunOutput>
// eslint-disable-next-line @typescript-eslint/no-explicit-any
| Record<string, any>,
config?: StructuredOutputMethodOptions<boolean>
):
| Runnable<BaseLanguageModelInput, RunOutput>
| Runnable<
BaseLanguageModelInput,
{ raw: BaseMessage; parsed: RunOutput }
> {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const schema: z.ZodType<RunOutput> | Record<string, any> = outputSchema;
const name = config?.name;
const method = config?.method;
const includeRaw = config?.includeRaw;
if (method === "jsonMode") {
throw new Error(
`ChatGoogleGenerativeAI only supports "functionCalling" as a method.`
);
}
let functionName = name ?? "extract";
let outputParser: BaseLLMOutputParser<RunOutput>;
let tools: GoogleGenerativeAIFunctionDeclarationsTool[];
if (isZodSchema(schema)) {
const jsonSchema = zodToGenerativeAIParameters(schema);
tools = [
{
functionDeclarations: [
{
name: functionName,
description:
jsonSchema.description ?? "A function available to call.",
parameters: jsonSchema as GenerativeAIFunctionDeclarationSchema,
},
],
},
];
outputParser = new GoogleGenerativeAIToolsOutputParser<
z.infer<typeof schema>
>({
returnSingle: true,
keyName: functionName,
zodSchema: schema,
});
} else {
let geminiFunctionDefinition: GenerativeAIFunctionDeclaration;
if (