-
Notifications
You must be signed in to change notification settings - Fork 10
/
ftemp.py
753 lines (652 loc) · 33.3 KB
/
ftemp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
"""Various templates for use with PyFEHM."""
"""
Copyright 2013.
Los Alamos National Security, LLC.
This material was produced under U.S. Government contract DE-AC52-06NA25396 for
Los Alamos National Laboratory (LANL), which is operated by Los Alamos National
Security, LLC for the U.S. Department of Energy. The U.S. Government has rights
to use, reproduce, and distribute this software. NEITHER THE GOVERNMENT NOR LOS
ALAMOS NATIONAL SECURITY, LLC MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES
ANY LIABILITY FOR THE USE OF THIS SOFTWARE. If software is modified to produce
derivative works, such modified software should be clearly marked, so as not to
confuse it with the version available from LANL.
Additionally, this library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by the
Free Software Foundation; either version 2.1 of the License, or (at your option)
any later version. Accordingly, this library is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General
Public License for more details.
"""
import numpy as np
import scipy as sp
import os,math
from fdata import*
from ftool import*
from matplotlib import pyplot as plt
from fvars import*
from fdflt import*
dflt = fdflt()
#-----------------------------------------------------------------------------------------------------
#------------------------------------- FEHM MODEL TEMPLATES ------------------------------------------
#-----------------------------------------------------------------------------------------------------
class wellbore_model(fdata):
'''Create a simple 2D radial well bore model. Returns an fdata object corresponding to the model.
User inputs dimensions of the wellbore, steel pipe, casing and reservoir, their material properties and
permeability, information about initial reservoir conditions and the injection operation.
The model grid is generated on initialisation
but this can be replaced with a more complex mesh by calling ``read_grid()`` - zones will be automatically
reassigned.
The simulation is executed by calling the ``run()`` method.
Output data are visualised by calling ``plot()`` or ``summarise()`` methods.
:param xL: Horizontal dimension of model.
:type xL: fl64
:param zL: Vertical dimension of model.
:type zL: fl64
:param wellbore_radius: Well-bore radius.
:type wellbore_radius: fl64
:param wellbore_xdiv: Horizontal grid divisions in wellbore.
:type wellbore_xdiv: int
:param pipe_width: Steel pipe width.
:type pipe_width: fl64
:param pipe_xdiv: Horizontal grid divisions in steel pipe.
:type pipe_xdiv: int
:param casing_width: Casing width.
:type casing_width: fl64
:param casing_xdiv: Horizontal grid divisions in casing.
:type casing_xdiv: int
:param reservoir_xdiv: Horizontal grid divisions in reservoir.
:type reservoir_xdiv: int
:param zdiv: Number of vertical divisions for the grid (not including the feedzone).
:type zdiv: lst[int]
:param zprop: Proportioning of vertical dimension for gridding.
:type zprop: lst[fl64]
:param injection_temperature: Temperature of fluid injected at the wellhead.
:type injection_temperature: fl64
:param injection_flow_rate: Flow rate of fluid injected at the wellhead.
:type injection_flow_rate: fl64
:param initial_temperature: Specifies initial temperature conditions in the reservoir. If positive, initial temperature is interpreted as isotropic. If negative, initial temperature is interpreted as a vertical gradient. If a string, initial temperature corresponds to a text file containing a temperature-depth profile and applies this as the initial reservoir temperatures.
:type initial_temperature: fl64, str
:param simulation_time: Length of simulation in days.
:type simulation_time: fl64
:param inputfilename: Name of input file.
:type inputfilename: str
:param gridfilename: Name of grid file.
:type gridfilename: str
:param pipe_density: Density of steel pipe.
:type pipe_density: fl64
:param pipe_specific_heat: Specific heat of steel pipe.
:type pipe_specific_heat: fl64
:param casing_density: Density of casing.
:type casing_density: fl64
:param casing_specific_heat: Specific heat of casing.
:type casing_specific_heat: fl64
:param reservoir_density: Density of reservoir.
:type reservoir_density: fl64
:param reservoir_specific_heat: Specific heat of reservoir.
:type reservoir_specific_heat: fl64
:param reservoir_permeability: Reservoir permeability, specified as either isotropic k0 or anisotropic [kx,ky,kz].
:type reservoir_permeability: fl64, lst[fl64]
:param wellbore_permeability: Wellbore permeability, surrogate representing rapid transport down well. Set to high value.
:type wellbore_permeability: fl64, lst[fl64]
'''
def __init__(self,
xL, zL, wellbore_radius, wellbore_xdiv, pipe_width, pipe_xdiv, casing_width, casing_xdiv,
reservoir_xdiv, zdiv, zprop,
injection_temperature, injection_flow_rate,
initial_temperature,
simulation_time,
inputfilename='', gridfilename='', work_dir = None,
pipe_density = 2500., pipe_specific_heat=1.e3, pipe_conductivity = 2.,
casing_density = 2500., casing_specific_heat=1.e3, casing_conductivity = 0.5,
reservoir_density = 2500., reservoir_specific_heat=1.e3, reservoir_conductivity = 1., reservoir_porosity = 0.1, reservoir_permeability = 1.e-15,
wellbore_permeability=1.e-4,
surface_pressure=0.1, surface_temperature=25.
):
# 1. inherit properties and initialise
super(wellbore_model,self).__init__(filename='',gridfilename='',inconfilename='',sticky_zones=dflt.sticky_zones,associate=dflt.associate,work_dir = None,
full_connectivity=dflt.full_connectivity,skip=[],keep_unknown=dflt.keep_unknown)
self.nobr = True
self._injection_temperature = injection_temperature
self._injection_flow_rate = injection_flow_rate
self._initial_temperature = initial_temperature
self._simulation_time = simulation_time
self._pipe_density = pipe_density
self._casing_density = casing_density
self._reservoir_density = reservoir_density
self._pipe_specific_heat = pipe_specific_heat
self._casing_specific_heat = casing_specific_heat
self._reservoir_specific_heat = reservoir_specific_heat
self._pipe_conductivity = pipe_conductivity
self._casing_conductivity = casing_conductivity
self._reservoir_conductivity = reservoir_conductivity
self._reservoir_porosity = reservoir_porosity
self._reservoir_permeability = reservoir_permeability
self._wellbore_permeability = wellbore_permeability
self._surface_pressure = surface_pressure
self._surface_temperature = surface_temperature
self._remember_inittemp = None
if inputfilename: self._filename = inputfilename
if gridfilename: self.grid._path.filename = gridfilename
self.work_dir = work_dir
# 2. create a grid
if xL == 0 or zL == 0: print 'Error: grid dimensions must be non-zero'; return
if wellbore_radius+casing_width+pipe_width>xL: print 'Error: No room for reservoir rock.'; return
#if (abs(feedzone_depth)+feedzone_width/2)>abs(zL): print 'Error: model not deep enough to include feedzone.'; return
if gridfilename: meshname = gridfilename
elif inputfilename: meshname = inputfilename.split('.')[0]+'grid'
else: meshname = 'wellbore.grid'
zL = abs(zL); xL = abs(xL)
reservoir_width = xL - wellbore_radius - pipe_width - casing_width
x = (list(np.linspace(0,wellbore_radius,wellbore_xdiv))+
list(np.linspace(wellbore_radius,wellbore_radius+pipe_width,pipe_xdiv))[1:]+
list(np.linspace(wellbore_radius+pipe_width,wellbore_radius+pipe_width+casing_width,casing_xdiv))[1:]+
list(np.linspace(wellbore_radius+pipe_width+casing_width,xL,reservoir_xdiv))[1:])
z = np.linspace(-zL,0,zdiv)
self.grid.make(meshname,x=x,y=z,z=[0.],radial=True)
# 3. create zones
x0,x1 = self.grid.xmin,self.grid.xmax
z0,z1 = self.grid.ymin,self.grid.ymax
wb = fzone(index=1,name='wellbore')
wb.rect([x0-0.01,z0-0.01],[x0-0.01+wellbore_radius,z1+0.01])
self.add(wb)
wb = fzone(index=2,name='wellhead')
wb.rect([x0-0.01,z1-0.01],[x0-0.01+wellbore_radius,z1+0.01])
self.add(wb)
wb = fzone(index=3,name='wellbase')
wb.rect([x0-0.01,z0-0.01],[x0-0.01+wellbore_radius,z0+0.01])
self.add(wb)
pp = fzone(index=10,name='pipe_upper')
pp.rect([x0-0.01+wellbore_radius,z0-0.01],[x0-0.01+wellbore_radius+pipe_width,z1+0.01])
self.add(pp)
cs = fzone(index=20,name='casing_upper')
cs.rect([x0-0.01+wellbore_radius+pipe_width,z0-0.01],
[x0-0.01+wellbore_radius+pipe_width+casing_width,z1+0.01])
self.add(cs)
rk = fzone(index=100,name='reservoir')
rk.rect([x0-0.01+wellbore_radius+pipe_width+casing_width,z0-0.01],[x1+0.01,z1+0.01])
self.add(rk)
sz = fzone(index=900, name = 'surface')
sz.rect([x0-0.01+wellbore_radius,z1-0.01],[x1+0.01,z1+0.01])
self.add(sz)
ff = fzone(index=901, name = 'farfield')
ff.rect([x1-0.01,z0-0.01],[x1+0.01,z1+0.01])
self.add(ff)
# 4. assign material properties
# - conductivity
self.add(fmacro('cond',zone=0,param=(('cond_x',1),('cond_y',1),('cond_z',1))))
self.add(fmacro('cond',zone=10,param=(('cond_x',self.pipe_conductivity),('cond_y',self.pipe_conductivity),('cond_z',self.pipe_conductivity))))
self.add(fmacro('cond',zone=20,param=(('cond_x',self.casing_conductivity),('cond_y',self.casing_conductivity),('cond_z',self.casing_conductivity))))
self.add(fmacro('cond',zone=100,param=(('cond_x',self.reservoir_conductivity),('cond_y',self.reservoir_conductivity),('cond_z',self.reservoir_conductivity))))
# - rock
self.add(fmacro('rock',zone=10,param=(('density',self.pipe_density),('porosity',0),('specific_heat',self.pipe_specific_heat))))
self.add(fmacro('rock',zone=20,param=(('density',self.casing_density),('porosity',0),('specific_heat',self.casing_specific_heat))))
self.add(fmacro('rock',zone=100,param=(('density',self.reservoir_density),('porosity',self.reservoir_porosity),('specific_heat',self.reservoir_specific_heat))))
self.add(fmacro('rock',zone=1,param=(('density',2500.),('porosity',1.),('specific_heat',1.e3))))
# - permeability
self.add(fmacro('perm',zone=0,param=(('kx',1.e-15),('ky',1.e-15),('kz',1.e-15))))
self.add(fmacro('perm',zone=10,param=(('kx',1.e-20),('ky',1.e-20),('kz',1.e-20))))
self.add(fmacro('perm',zone=20,param=(('kx',1.e-20),('ky',1.e-20),('kz',1.e-20))))
reservoirPerm = fmacro('perm',zone=100)
if (isinstance(reservoir_permeability,list) or isinstance(reservoir_permeability,tuple) or
isinstance(reservoir_permeability,np.ndarray)):
reservoirPerm.param['kx']=reservoir_permeability[0]
reservoirPerm.param['ky']=reservoir_permeability[1]
if len(reservoir_permeability) == 2:
reservoirPerm.param['kz']=reservoir_permeability[1]
elif len(reservoir_permeability) == 3:
reservoirPerm.param['kz']=reservoir_permeability[2]
else:
reservoirPerm.param['kx']=reservoir_permeability
reservoirPerm.param['ky']=reservoir_permeability
reservoirPerm.param['kz']=reservoir_permeability
self.add(reservoirPerm)
wellborePerm = fmacro('perm',zone=1)
wellborePerm.param['kx']=wellbore_permeability
wellborePerm.param['ky']=wellbore_permeability
wellborePerm.param['kz']=wellbore_permeability
self.add(wellborePerm)
# 5. assign injection - use boun and distributed flow source
self.add(fboun(zone=[self.zone['wellhead']],type='ti',times=[0,self.simulation_time],
variable=[['dsw',-self.injection_flow_rate,-self.injection_flow_rate],
['t',self.injection_temperature,self.injection_temperature]]))
# 6. assign initial conditions
self.add(fmacro('grad',zone=0,param=(('reference_coord',z1),('direction',2),('variable',1),
('reference_value',0.1),('gradient',-0.00981))))
self._set_reservoir_temperature()
# 7. assign boundary conditions
self.add(fmacro('flow',zone=900,param=(('rate',self.surface_pressure),('energy',-self.surface_temperature),('impedance',100))))
self.add(fmacro('flow',zone=901,param=(('rate',0),('energy',-self.surface_temperature),('impedance',-100))))
self.add(fmacro('flow',zone=3,param=(('rate',0),('energy',-self.surface_temperature),('impedance',-100))))
# 8. assign simulation parameters
self.ctrl['geometry_ICNL'] = 4
self.ctrl['gravity_direction_AGRAV'] = 2
self.ctrl['stor_file_LDA'] = 0
self.ctrl['min_timestep_DAYMIN'] = 1.e-8
self.ctrl['max_timestep_DAYMAX'] = self.simulation_time/10
self.time['initial_timestep_DAY'] = self.simulation_time/1.e2
self.time['max_time_TIMS'] = self.simulation_time
self.time['max_timestep_NSTEP'] = 2000
# 9. assign history and contour output
self.hist.variables.append(['pressure','temperature','flow'])
self.hist.timestep_interval=1
self.hist.format='tec'
self.hist.time_interval=1.e20
self.hist.nodelist = self.zone['wellbore'].nodelist
self.cont.variables.append(['temperature','pressure','xyz','liquid'])
def _set_reservoir_temperature(self):
if isinstance(self._initial_temperature,str):
if not os.path.isfile(self._initial_temperature): print 'ERROR: '+self._initial_temperature+' does not exist.'; return
tempfile = open(self._initial_temperature,'r')
lns = tempfile.readlines()
commaFlag = False; spaceFlag = False
if len(lns[0].split(',')) > 1: commaFlag = True
elif len(lns[0].split()) > 1: spaceFlag = True
if not commaFlag and not spaceFlag: print 'ERROR: incorrect formatting for '+self._initial_temperature+'. Expect first column depth (m) and second column temperature (degC), either comma or space separated.'; return
zs = []; Ts = []
for ln in lns:
if commaFlag: ln = ln.split(',')
elif spaceFlag: ln = ln.split()
zs.append(float(ln[0])); Ts.append(float(ln[1]))
allNeg = True #flag that info read in has positive z-coords (make negative)
for z in zs:
if z>0: allNeg = False; break
if allNeg: zs = [-z for z in zs]
zm = np.unique([nd.position[1] for nd in self.grid.nodelist])
zn_ind = 0
x0,x1 = self.grid.xmin,self.grid.xmax
y0,y1 = self.grid.ymin,self.grid.ymax
for z in zm:
zn=fzone(index=200+zn_ind);zn.rect([x0-0.01,z-0.01],[x1+0.01,z+0.01]);self.add(zn)
T = np.interp(-z,zs,Ts)
self.add(fmacro('pres',zone=200+zn_ind,param=(('pressure',5),('temperature',T),('saturation',1))))
zn_ind+=1
else:
if self._initial_temperature > 0:
temp = fmacro('pres',zone=0,param=(('pressure',1),('temperature',self._initial_temperature),('saturation',1)))
elif self._initial_temperature < 0:
temp = fmacro('grad',zone=0,param=(('reference_coord',self.grid.zmax),('direction',2),('variable',2),
('reference_value',self.surface_temperature),('gradient',self._initial_temperature)))
self.add(temp)
self._remember_inittemp = temp
def _clear_reservoir_temperature(self):
if isinstance(self._remember_inittemp,fmacro):
self.delete(self._remember_inittemp)
self._remember_inittemp = None
def plot(self,temperature_lims = [],pdf = '',combineString = 'gswin64',
Tslice = True, Tslice_xlims=[],Tslice_ylims=[], Tslice_divisions=[100,100], Tslice_method = 'nearest',
Pslice = True, Pslice_xlims=[],Pslice_ylims=[], Pslice_divisions=[100,100], Pslice_method = 'nearest',
Ttime = True, Ttime_xlims=[], Ttime_ylims=[],
Twell = True, Twell_times = [], Twell_xlims=[], Twell_ylims = [], Twell_initial=True, Twell_profiles=None,
Twell_output = False,
Pcorrection = True, Pcorrection_xlims=[], Pcorrection_ylims=[],
imperial_units = False,
write_out = False
):
'''Generate plots of wellbore simulation.
:param temperature_lims: Limits on temperature axis of temperature vs. time plot.
:type temperature_lims: lst[fl64,fl64]
:param pdf: Name of pdf file to combine all output plots. If not specified, pdf will not be created.
:type pdf: str
:param combineString: Name of ghostscript executable.
:type combineString: str
'''
# read in contour data
if self.cont.format == 'surf':
if self.work_dir:
cont = fcontour(self.work_dir+os.sep+self.files.root+'.*_days_sca_node.csv',latest=True)
else:
cont = fcontour(self.files.root+'.*_days_sca_node.csv',latest=True)
# read in history data
if self.hist.format == 'tec':
if self.work_dir:
hist = fhistory(self.work_dir+os.sep+self.files.root+'_*_his.dat')
else:
hist = fhistory(self.files.root+'_*_his.dat')
if pdf:
if self.work_dir: pdf = self.work_dir+os.sep+pdf
ext = 'eps'
mp = multi_pdf(save=pdf)
mp.combineString = combineString
else: ext = 'png'
Tmax = np.max(cont[cont.times[0]]['T'])
# 1. slice plot of temperature
if Tslice:
xlims = [self.grid.xmin,self.grid.xmax]
ylims = [self.grid.ymin,self.grid.ymax]
eqa = True
if Tslice_xlims: xlims = Tslice_xlims; eqa = False
if Tslice_ylims: ylims = Tslice_ylims; eqa = False
scale = 1.
title = 'temperature / $^o$C'
if imperial_units: scale = [9/5.,+32.]; title = 'temperature / $^o$F'
cont.slice_plot(variable = 'T',save=self.files.root+'_temperature.'+ext,cbar = True,
ylabel='z / m',title = title,xlims = xlims,
ylims = ylims,divisions=Tslice_divisions,method=Tslice_method,
equal_axes = eqa,scale = scale)
if pdf: mp.add(self.files.root+'_temperature.eps')
# 2. slice plot of pressure
if Pslice:
xlims = [self.grid.xmin,self.grid.xmax]
ylims = [self.grid.ymin,self.grid.ymax]
eqa = True
if Pslice_xlims: xlims = Pslice_xlims; eqa = False
if Pslice_ylims: ylims = Pslice_ylims; eqa = False
scale = 1.
title = 'pressure / MPa'
if imperial_units: scale = 145.05; title = 'pressure / psi'
cont.slice_plot(variable = 'P',save=self.files.root+'_pressure.'+ext,cbar = True,
ylabel='z / m',title = title,xlims = xlims,
ylims = ylims,divisions=Pslice_divisions,method=Pslice_method,
equal_axes = eqa,scale=scale)
if pdf: mp.add(self.files.root+'_pressure.eps')
# 3. time series plot of bottom hole temperature
if Ttime:
xlims = [hist.times[0],hist.times[-1]]
if Ttime_xlims: xlims = Ttime_xlims
nd = self.grid.node_nearest_point([self.grid.xmin,self.grid.ymin,0])
Tnd = hist['T'][nd.index]
y0,y1 = np.min(Tnd),np.max(Tnd); ymid = (y0+y1)/2; yrange = y1-y0
ylims = [ymid-0.55*yrange,ymid+0.55*yrange]
if Ttime_ylims: ylims = Ttime_ylims
scale = 1.
ylabel = 'temperature / $^o$C'
if imperial_units:
scale = [9/5.,+32.]
ylabel = 'temperature / $^o$F'
ylims = list(scale[0]*np.array(ylims)+scale[1])
hist.time_plot(node = nd.index,save=self.files.root+'_temperatureWB.'+ext,
variable='T',xlabel='t / days', ylabel=ylabel,title='temperature at well bore',
var_lim=ylims,t_lim=xlims,scale = scale)
mp.add(self.files.root+'_temperatureWB.'+ext)
# write out text
if write_out:
if self.work_dir:
of = open(self.work_dir+os.sep+self.files.root+'_DH_temp.dat','w')
else:
of = open(self.files.root+'_DH_temp.dat','w')
t = hist.times
T = hist['T'][nd.index]
for ti,Ti in zip(t,T):
of.write(str(ti)+','+str(Ti)+'\n')
of.close()
# 4. down well plot of temperature, multiple times
if Twell:
xlabel = 'temperature / $^o$C'
if imperial_units:
xlabel = 'temperature / $^o$F'
cols = ['k-','r-','b-','k--','r--','b--','k:','r:','b:']
if len(Twell_times)>9: Twell_times = Twell_times[:9]
# get times
if not Twell_times: ts = [hist.times[-1]]
else:
ts = []
for t in Twell_times:
dt = abs(np.array(hist.times) - t)
ts.append(hist.times[np.where(dt == np.min(dt))[0][0]])
# plot all profiles
plt.figure(figsize=[8,8])
ax = plt.axes([0.15,0.15,0.75,0.75])
ax.set_title('downhole temperature profiles',size='medium')
x0 = self.grid.xmin
allNd = [nd for nd in self.hist.nodelist if nd.position[0] == x0]
allNd.sort(key=lambda x: x.position[1])
for t,col in zip(ts,cols[:len(ts)]):
tind = np.where(hist.times==t)[0][0]
if imperial_units:
T = [hist['T'][nd.index][tind]*9/5.+32. for nd in allNd]
else:
T = [hist['T'][nd.index][tind] for nd in allNd]
z = [nd.position[1] for nd in allNd]
ax.plot(T,z,col)
if Twell_output:
filename = self.files.root+'_T_'+str(hist.times[tind])+'days'
if imperial_units: filename+='_imperial'
filename+='.txt'
lns = []
for zi,Ti in zip(z,T): lns.append(str(zi)+','+str(Ti)+'\n')
file = open(filename,'w'); file.writelines(lns); file.close()
if Twell_initial:
if imperial_units:
T = [hist['T'][nd.index][0]*9/5.+32. for nd in allNd]
else:
T = [hist['T'][nd.index][0] for nd in allNd]
z = [nd.position[1] for nd in allNd]
ax.plot(T,z,'g-')
if Twell_output:
filename = self.files.root+'_T_0days'
if imperial_units: filename+='_imperial'
filename+='.txt'
lns = []
for zi,Ti in zip(z,T): lns.append(str(zi)+','+str(Ti)+'\n')
file = open(filename,'w'); file.writelines(lns); file.close()
if Twell_xlims: ax.set_xlim(Twell_xlims)
if Twell_ylims: ax.set_ylim(Twell_ylims)
ax.set_xlabel(xlabel)
ax.set_ylabel('z / m')
xlims = ax.get_xlim()
ylims = ax.get_ylim()
if Twell_profiles:
if isinstance(Twell_profiles,str): Twell_profiles = [Twell_profiles]
ylims = ax.get_ylim()
for profile,col in zip(Twell_profiles,cols[:len(Twell_profiles)]):
if not os.path.isfile(profile): print 'WARNING: '+profile+' not found'; continue
dat = np.loadtxt(profile)
zs = dat[:,0]; Ts = dat[:,1]
allNeg = True #flag that info read in has positive z-coords (make negative)
for z in zs:
if z>0: allNeg = False; break
if allNeg: zs = [-z for z in zs]
N = int(abs(zs[-1]-zs[0])/abs(ylims[0]-ylims[1])*24)+3
z = np.linspace(np.min(zs),np.max(zs),N)
Ts = np.interp(z,zs,Ts)
ax.plot(Ts,-1*np.array(z),col+'x')
# set legend for flow rates
text_size = 'small'
xc,yc = 0.7,0.94
ln_len = 0.06
txt_gap = 0.04
dy = 0.04;
xr = xlims[1]-xlims[0]
yr = ylims[1]-ylims[0]
dyi = -dy*(ylims[1]-ylims[0])
x1 = xlims[0] +xc*xr
y1 = ylims[0] +yc*yr
import math
if Twell_initial:
ax.plot([x1,x1+ln_len*xr],[y1,y1],'g-')
ax.text(x1+(ln_len+txt_gap)*xr,y1,'t = 0 days',size=text_size,ha='left',va='center')
y1 = y1 + dyi
cnt = 0
for t,col in zip(ts,cols[:len(ts)]):
ax.plot([x1,x1+ln_len*xr],[y1,y1],col)
if isinstance(t,list): t = t[0]
if t>=1 and t<10: tstr = str(round(t*10)/10)
elif t>=10: tstr = str(int(t))
else: tstr = str(t)
tstr
ax.text(x1+(ln_len+txt_gap)*xr,y1,'t = '+tstr+' days',size=text_size,ha='left',va='center')
y1 = y1 + dyi
if Twell_profiles:
if cnt == len(Twell_profiles): continue
ax.plot([x1,x1+ln_len*xr],[y1,y1],col)
ax.plot((2*x1+ln_len*xr)/2,y1,col+'x')
if isinstance(t,list): t = t[0]
if t>=1 and t<10: tstr = str(round(t*10)/10)
elif t>=10: tstr = str(int(t))
else: tstr = str(t)
tstr
ax.text(x1+(ln_len+txt_gap)*xr,y1,Twell_profiles[cnt].split('.')[0],size=text_size,ha='left',va='center')
y1 = y1 + dyi
cnt +=1
ax.set_xlim(xlims)
ax.set_ylim(ylims)
plt.savefig(self.files.root+'_Twell.'+ext, dpi=100, facecolor='w', edgecolor='w',orientation='portrait',
format=ext,transparent=True, bbox_inches=None, pad_inches=0.1)
if pdf: mp.add(self.files.root+'_Twell.'+ext)
# 5. plot pressure correction at base of hole
if Pcorrection:
x0 = self.grid.xmin
allNd = [nd for nd in self.hist.nodelist if nd.position[0] == x0]
allNd.sort(key=lambda x: x.position[1])
T = [hist['T'][nd.index][0] for nd in allNd] # temperature profile
z = [nd.position[1] for nd in allNd]
P = [abs(nd.position[1])*1e3*9.81/1e6 for nd in allNd]
rho = dens(P,T)[0]
dP0 = abs(np.trapz(rho,z))*9.81/1e6
dP=[]
for t in hist.times:
tind = np.where(hist.times==t)[0][0]
T = [hist['T'][nd.index][tind] for nd in allNd] # temperature profile
rho = dens(P,T)[0]
dP.append(abs(np.trapz(rho,z))*9.81/1e6 - dP0)
plt.figure(figsize=[8,8])
plt.clf()
ax = plt.axes([0.15,0.15,0.75,0.75])
ax.set_title('downhole density pressure correction',size='medium')
scale = 1.
if imperial_units: scale = 145.05
ax.plot(hist.times,np.array(dP)*scale,'bx-')
# write out text
if write_out:
if self.work_dir:
of = open(self.work_dir+os.sep+self.files.root+'_DH_dens_corr.dat','w')
of2 = open(self.work_dir+os.sep+self.files.root+'_DH_pres.dat','w')
else:
of = open(self.files.root+'_DH_dens_corr.dat','w')
of2 = open(self.files.root+'_DH_pres.dat','w')
t = hist.times
for ti,dp in zip(t,dP):
of.write(str(ti)+','+str(dp)+'\n')
of2.write(str(ti)+','+str(dp+dP0)+'\n')
of.close()
of2.close()
ax.set_xlabel('time / days')
if imperial_units:
ax.set_ylabel('pressure correction / psi')
else:
ax.set_ylabel('pressure correction / MPa')
ax.set_xlim([hist.times[0],hist.times[-1]])
if Pcorrection_xlims: ax.set_xlim(Pcorrection_xlims)
if Pcorrection_ylims: ax.set_ylim(Pcorrection_ylims)
plt.savefig(self.files.root+'_Pcorrection.'+ext, dpi=100, facecolor='w', edgecolor='w',orientation='portrait',
format=ext,transparent=True, bbox_inches=None, pad_inches=0.1)
if pdf: mp.add(self.files.root+'_Pcorrection.'+ext)
if pdf: mp.make()
# -------------------------------------- ATTRIBUTES ------------------------------------------------
def _get_pipe_density(self): return self._pipe_density
def _set_pipe_density(self,value):
self._pipe_density = value
self.rock['pipe_upper'].param['density'] = value
pipe_density = property(_get_pipe_density, _set_pipe_density) #: (*fl64*) Density of pipe.
def _get_pipe_specific_heat(self): return self._pipe_specific_heat
def _set_pipe_specific_heat(self,value):
self._pipe_specific_heat = value
self.rock['pipe_upper'].param['specific_heat'] = value
pipe_specific_heat = property(_get_pipe_specific_heat, _set_pipe_specific_heat) #: (*fl64*) Specific heat of pipe.
def _get_casing_density(self): return self._casing_density
def _set_casing_density(self,value):
self._casing_density = value
self.rock['casing_upper'].param['density'] = value
casing_density = property(_get_casing_density, _set_casing_density) #: (*fl64*) Density of casing.
def _get_casing_specific_heat(self): return self._casing_specific_heat
def _set_casing_specific_heat(self,value):
self._casing_specific_heat = value
self.rock['casing_upper'].param['specific_heat'] = value
casing_specific_heat = property(_get_casing_specific_heat, _set_casing_specific_heat) #: (*fl64*) Specific heat of casing
def _get_reservoir_density(self): return self._reservoir_density
def _set_reservoir_density(self,value):
self._reservoir_density = value
self.rock['reservoir'].param['density'] = value
reservoir_density = property(_get_reservoir_density, _set_reservoir_density) #: (*fl64*) Density of reservoir.
def _get_reservoir_specific_heat(self): return self._reservoir_specific_heat
def _set_reservoir_specific_heat(self,value):
self._reservoir_specific_heat = value
self.rock['reservoir'].param['specific_heat'] = value
reservoir_specific_heat = property(_get_reservoir_specific_heat, _set_reservoir_specific_heat) #: (*fl64*) Specific heat of reservoir
def _get_reservoir_porosity(self): return self._reservoir_porosity
def _set_reservoir_porosity(self,value):
self._reservoir_porosity = value
self.rock['reservoir'].param['porosity'] = value
reservoir_porosity = property(_get_reservoir_porosity, _set_reservoir_porosity) #: (*fl64*) Porosity of reservoir.
def _get_reservoir_permeability(self): return self._reservoir_permeability
def _set_reservoir_permeability(self,value):
self._reservoir_permeability = value
if (isinstance(value,list) or isinstance(value,tuple) or
isinstance(value,np.ndarray)):
self.perm['reservoir'].param['kx']=value[0]
self.perm['reservoir'].param['ky']=value[1]
if len(value) == 2:
self.perm['reservoir'].param['kz']=value[1]
elif len(value) == 3:
self.perm['reservoir'].param['kz']=value[2]
else:
self.perm['reservoir'].param['kx']=value
self.perm['reservoir'].param['ky']=value
self.perm['reservoir'].param['kz']=value
reservoir_permeability = property(_get_reservoir_permeability, _set_reservoir_permeability) #: (*fl64*) Permeability of reservoir. If three element list, tuple or ndarray is passed, this is assumed to correspond to [kx,ky,kz].
def _get_wellbore_permeability(self): return self._wellbore_permeability
def _set_wellbore_permeability(self,value):
self._wellbore_permeability = value
self.perm['wellbore'].param['kx'] = value
self.perm['wellbore'].param['ky'] = value
self.perm['wellbore'].param['kz'] = value
wellbore_permeability = property(_get_wellbore_permeability, _set_wellbore_permeability) #: (*fl64*) Permeability in the wellbore. This should be set to a high number, representing free-flowing water.
def _get_pipe_conductivity(self): return self._pipe_conductivity
def _set_pipe_conductivity(self,value):
self._pipe_conductivity = value
self.cond['pipe_upper'].param['cond_x'] = value
self.cond['pipe_upper'].param['cond_y'] = value
self.cond['pipe_upper'].param['cond_z'] = value
pipe_conductivity = property(_get_pipe_conductivity, _set_pipe_conductivity) #: (*fl64*) Thermal conductivity of the steel pipe.
def _get_casing_conductivity(self): return self._casing_conductivity
def _set_casing_conductivity(self,value):
self._casing_conductivity = value
self.cond['casing_upper'].param['cond_x'] = value
self.cond['casing_upper'].param['cond_y'] = value
self.cond['casing_upper'].param['cond_z'] = value
casing_conductivity = property(_get_casing_conductivity, _set_casing_conductivity) #: (*fl64*) Thermal conductivity of the casing.
def _get_reservoir_conductivity(self): return self._reservoir_conductivity
def _set_reservoir_conductivity(self,value):
self._reservoir_conductivity = value
self.cond['reservoir'].param['cond_x'] = value
self.cond['reservoir'].param['cond_y'] = value
self.cond['reservoir'].param['cond_z'] = value
reservoir_conductivity = property(_get_reservoir_conductivity, _set_reservoir_conductivity) #: (*fl64*) Thermal conductivity of the reservoir.
def _get_surface_pressure(self): return self._surface_pressure
def _set_surface_pressure(self,value):
self._surface_pressure = value
self.bounlist[0].variables = [['dsw',self.injection_flow_rate,self.injection_flow_rate],
['t',self.injection_temperature,self.injection_temperature],
['pw',value,value]]
surface_pressure = property(_get_surface_pressure, _set_surface_pressure) #: (**) Pressure at top surface of model, default is atmospheric.
def _get_surface_temperature(self): return self._surface_temperature
def _set_surface_temperature(self,value):
self._surface_temperature = value
self.flow['surface'].param['temperature'] = value
surface_temperature = property(_get_surface_temperature, _set_surface_temperature) #: (**) Temperature at top surface of model, default is 25degC.
def _get_injection_temperature(self): return self._injection_temperature
def _set_injection_temperature(self,value):
self._injection_temperature = value
self.bounlist[0].variables = [['dsw',self.injection_flow_rate,self.injection_flow_rate],['t',value,value],
['pw',self.surface_pressure,self.surface_pressure]]
injection_temperature = property(_get_injection_temperature, _set_injection_temperature) #: (*fl64*) Temperature of the fluid injected at the wellhead.
def _get_injection_flow_rate(self): return self._injection_flow_rate
def _set_injection_flow_rate(self,value):
self._injection_flow_rate = value
self.bounlist[0].variables = [['dsw',value,value],['t',self.injection_temperature,self.injection_temperature],
['pw',self.surface_pressure,self.surface_pressure]]
injection_flow_rate = property(_get_injection_flow_rate, _set_injection_flow_rate) #: (*fl64*) Flow rate of fluid injected at the wellhead.
def _get_simulation_time(self): return self._simulation_time
def _set_simulation_time(self,value):
self._simulation_time = value
self.bounlist[0].times = [0.,value]
self.time['initial_timestep_DAY'] = value/1.e2
self.time['max_time_TIMS'] = value
simulation_time = property(_get_simulation_time, _set_simulation_time) #: (*fl64*) Length of simulation in days
def _get_initial_temperature(self): return self._initial_temperature
def _set_initial_temperature(self,value):
self._initial_temperature = value
self._clear_reservoir_temperature()
self._set_reservoir_temperature()
initial_temperature = property(_get_initial_temperature, _set_initial_temperature) #: (*fl64*, *str*) Specifies initial temperature conditions in the reservoir. If positive, initial temperature is interpreted as isotropic. If negative, initial temperature is interpreted as a vertical gradient. If a string, initial temperature corresponds to a text file containing a temperature-depth profile and applies this as the initial reservoir temperatures.