-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcrfrnn_model.py
136 lines (100 loc) · 4.51 KB
/
crfrnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
MIT License
Copyright (c) 2017 Sadeep Jayasumana
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from keras.layers.convolutional import UpSampling2D
from keras.layers.core import Activation, Reshape, Permute
from keras.models import Model
from keras.layers import Conv2D, MaxPooling2D, Input, ZeroPadding2D, \
Dropout, Conv2DTranspose, Cropping2D, Add, BatchNormalization
from crfrnn_layer import CrfRnnLayer
def get_crfrnn_model_def (nClasses , optimizer=None , input_height=360, input_width=480 ):
""" Returns Keras CRN-RNN model definition.
Currently, only 500 x 500 images are supported. However, one can get this to
work with different image sizes by adjusting the parameters of the Cropping2D layers
below.
"""
channels, height, weight = 3, input_height, input_width
# Input
input_shape = (height, weight, 3)
img_input = Input(shape=input_shape)
kernel = 3
filter_size = 64
pad = 1
pool_size = 2
# Add plenty of zero padding
x = ZeroPadding2D(padding=(pad, pad))(img_input)
# VGG-16 convolution block 1
x = Conv2D(filter_size, (kernel, kernel), padding='valid', name='conv1_1')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((pool_size, pool_size), name='pool1')(x)
# VGG-16 convolution block 1
x = Conv2D(128, (kernel, kernel), padding='valid', name='conv1_2')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((pool_size, pool_size), name='pool2')(x)
# VGG-16 convolution block 1
x = Conv2D(256, (kernel, kernel), padding='valid', name='conv1_3')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((pool_size, pool_size), name='pool3')(x)
pool3 = x
# VGG-16 convolution block 1
x = Conv2D(512, (kernel, kernel), padding='valid', name='conv1_4')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D((pool_size, pool_size), name='pool4')(x)
pool4 = x
#decoder
x = ZeroPadding2D(padding=(pad, pad))(x)
x = Conv2D(512, (kernel, kernel), padding='valid', name='conv2_1')(x)
x = BatchNormalization()(x)
x = UpSampling2D((pool_size, pool_size))(x)
x = ZeroPadding2D(padding=(pad, pad))(x)
x = Conv2D(256, (kernel, kernel), padding='valid', name='conv2_2')(x)
x = BatchNormalization()(x)
x = UpSampling2D((pool_size, pool_size))(x)
x = ZeroPadding2D(padding=(pad, pad))(x)
x = Conv2D(128, (kernel, kernel), padding='valid', name='conv2_3')(x)
x = BatchNormalization()(x)
x = UpSampling2D((pool_size, pool_size))(x)
x = ZeroPadding2D(padding=(pad, pad))(x)
x = Conv2D(filter_size, (kernel, kernel), padding='valid', name='conv2_4')(x)
x = BatchNormalization()(x)
x = Conv2D(nClasses, (1, 1), padding='valid', name='conv3_1')(x)
#x = Conv2D(100,(kernel,kernel),padding='valid')(x)
#out_height = x.shape[1]
#out_width = x.shape[2]
#x = Reshape((nClasses,32*32), input_shape=(32, 32, nClasses))(x)
#x = Permute((2,1))(x)
#x = Activation('softmax')(x)
print x
#x = UpSampling2D(size=(4,4))(x)
output = CrfRnnLayer(image_dims=(32, 32),
num_classes=nClasses,
theta_alpha=160.,
theta_beta=3.,
theta_gamma=3.,
num_iterations=10,
name='crfrnn')([x, img_input])
# Build the model
model = Model(img_input, output, name='crfrnn_net')
model.outputHeight = 32
model.outputWidth = 32
return model