-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_algorithms.py
210 lines (178 loc) · 6.49 KB
/
visualize_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import librosa
import librosa.display
import numpy as np
import matplotlib.pyplot as plt
from typing import List, Tuple
from algorithms import (
YAAPTPitchAlgorithm,
PraatPitchAlgorithm,
TorchCREPEPitchAlgorithm,
SWIPEPitchAlgorithm,
RAPTPitchAlgorithm,
pYINPitchAlgorithm,
PENNPitchAlgorithm,
)
def assign_colors_and_styles(num_algorithms):
"""Automatically assign colors and linestyles."""
colors = plt.get_cmap("tab10", num_algorithms).colors
linestyles = ["-", "--", "-.", ":"] * (num_algorithms // 4 + 1)
return colors, linestyles
def calculate_spectrogram_params(fmin: float, fmax: float, sr: int) -> dict:
"""Calculate optimal spectrogram parameters based on frequency range and sampling rate."""
n_mels = int(np.ceil(128 * (fmax - fmin) / 4000))
hop_length = int(sr / 100)
win_length = 4 * hop_length
return {
"n_mels": max(32, min(256, n_mels)),
"hop_length": hop_length,
"win_length": win_length,
"n_fft": 2 ** int(np.ceil(np.log2(win_length))),
}
def compare_pitch_algorithms(
audio_file: str,
algorithms: List[Tuple[type, float]],
selected_algorithms: List[str],
sr: int = 22050,
hop_size: int = 256,
fmin: float = 65,
fmax: float = 300,
output_file: str = "output.jpg",
):
"""Compare different pitch detection algorithms."""
try:
audio, _ = librosa.load(audio_file, sr=sr)
audio_duration = librosa.get_duration(y=audio, sr=sr)
except Exception as e:
raise RuntimeError(f"Error loading audio file: {e}")
# Filter algorithms based on selection
selected_algorithms = [s.lower() for s in selected_algorithms]
filtered_algorithms = [
(algo_class, threshold)
for algo_class, threshold in algorithms
if algo_class.__name__.replace("PitchAlgorithm", "").lower()
in selected_algorithms
]
if not filtered_algorithms:
raise ValueError("No valid algorithms selected.")
# Assign colors and linestyles
colors, linestyles = assign_colors_and_styles(len(filtered_algorithms))
# Process audio with each algorithm
results = []
for (algo_class, threshold), color, linestyle in zip(
filtered_algorithms, colors, linestyles
):
algo_name = algo_class.__name__.replace("PitchAlgorithm", "")
print(f"Running: {algo_name}")
try:
algo_instance = algo_class(
sample_rate=sr, hop_size=hop_size, fmin=fmin, fmax=fmax
)
pitch, periodicity = algo_instance(audio, threshold=threshold)
results.append((algo_name, threshold, pitch, periodicity, color, linestyle))
except Exception as e:
print(f"Error processing {algo_name}: {e}")
continue
if not results:
raise ValueError("No algorithms produced results.")
ref_length = results[0][2].shape[-1]
times = np.linspace(0, audio_duration, ref_length)
# Set up the plot
fig = plt.figure(figsize=(15, 10))
gs = plt.GridSpec(2, 1, height_ratios=[1.5, 1])
ax1 = fig.add_subplot(gs[0])
ax2 = fig.add_subplot(gs[1])
# Generate and plot spectrogram
spec_params = calculate_spectrogram_params(fmin, fmax, sr)
S = librosa.feature.melspectrogram(y=audio, sr=sr, **spec_params)
spectrogram = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(
spectrogram,
sr=sr,
hop_length=spec_params["hop_length"],
x_axis="time",
y_axis="mel",
fmin=fmin,
fmax=fmax,
ax=ax1,
cmap="gray_r",
alpha=0.3,
)
# Plot pitch and periodicity
for algo_name, threshold, pitch, periodicity, color, linestyle in results:
pitch[periodicity < threshold] = np.nan
ax1.plot(
times, pitch, label=algo_name, alpha=0.8, color=color, linestyle=linestyle
)
ax2.plot(
times,
periodicity,
label=f"{algo_name} (threshold={threshold:.2f})",
alpha=0.8,
color=color,
linestyle=linestyle,
)
# Configure pitch plot
ax1.set_xlabel("Time (s)")
ax1.set_ylabel("Frequency (Hz)")
ax1.set_title("Pitch Analysis with Spectrogram")
ax1.legend(loc="upper right")
ax1.grid(True)
ax1.set_xlim(0, audio_duration)
yticks = np.linspace(fmin, fmax, 10)
ax1.set_yticks(yticks)
ax1.set_yticklabels([f"{y:.1f}" for y in yticks])
ax1.set_ylim(fmin, fmax)
# Configure periodicity plot
ax2.set_xlabel("Time (s)")
ax2.set_ylabel("Periodicity")
ax2.set_title("Periodicity")
ax2.legend(loc="upper right")
ax2.grid(True)
ax2.set_xlim(0, audio_duration)
plt.tight_layout()
try:
plt.savefig(output_file, dpi=300, bbox_inches="tight")
print(f"Visualization saved to {output_file}")
except Exception as e:
raise RuntimeError(f"Error saving visualization: {e}")
def main():
parser = argparse.ArgumentParser(description="Compare Pitch Detection Algorithms")
parser.add_argument("audio_file", type=str, help="Path to the input audio file")
parser.add_argument(
"--selected_algorithms",
nargs="+",
type=str,
default=["YAAPT", "pYIN", "SWIPE", "Praat", "TorchCREPE", "RAPT", "PENN"],
help="List of algorithms to visualize. Separate names by spaces, e.g., 'Praat SWIPE'.",
)
parser.add_argument("--sr", type=int, default=22050, help="Sampling rate")
parser.add_argument("--fmin", type=float, default=65, help="Minimum frequency")
parser.add_argument("--fmax", type=float, default=300, help="Maximum frequency")
parser.add_argument("--hop-size", type=int, default=256, help="Hop size in samples")
parser.add_argument(
"--output_file", type=str, default="output.jpg", help="Output file name"
)
args = parser.parse_args()
# Define algorithms as a list of tuples (algorithm_class, threshold)
algorithms = [
(YAAPTPitchAlgorithm, 0.2),
(PraatPitchAlgorithm, 0.1),
(TorchCREPEPitchAlgorithm, 0.3),
(SWIPEPitchAlgorithm, 0.4),
(RAPTPitchAlgorithm, 0.4),
(pYINPitchAlgorithm, 0.1),
(PENNPitchAlgorithm, 0.3),
]
compare_pitch_algorithms(
audio_file=args.audio_file,
algorithms=algorithms,
selected_algorithms=args.selected_algorithms,
sr=args.sr,
fmin=args.fmin,
fmax=args.fmax,
hop_size=args.hop_size,
output_file=args.output_file,
)
if __name__ == "__main__":
main()