-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrainbow.py
392 lines (318 loc) · 16.8 KB
/
rainbow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import copy
from typing import Callable
import torch
import torch.nn as nn
import torch.optim as optim
from aitraineree import DEVICE
from aitraineree.agents import AgentBase
from aitraineree.agents.agent_utils import soft_update
from aitraineree.buffers.buffer_factory import BufferFactory
from aitraineree.buffers.nstep import NStepBuffer
from aitraineree.buffers.per import PERBuffer
from aitraineree.loggers import DataLogger
from aitraineree.networks.heads import RainbowNet
from aitraineree.types import AgentState, BufferState, NetworkState
from aitraineree.types.dataspace import DataSpace
from aitraineree.types.experience import Experience
from aitraineree.utils import to_numbers_seq, to_tensor
class RainbowAgent(AgentBase):
"""Rainbow agent as described in [1].
Rainbow is a DQN agent with some improvements that were suggested before 2017.
As mentioned by the authors it's not exhaustive improvement but all changes are in
relatively separate areas so their connection makes sense. These improvements are:
* Priority Experience Replay
* Multi-step
* Double Q net
* Dueling nets
* NoisyNet
* CategoricalNet for Q estimate
Consider this class as a particular version of the DQN agent.
[1] "Rainbow: Combining Improvements in Deep Reinforcement Learning" by Hessel et al. (DeepMind team)
https://arxiv.org/abs/1710.02298
"""
model = "Rainbow"
def __init__(
self,
obs_space: DataSpace,
action_space: DataSpace,
state_transform: Callable | None = None,
reward_transform: Callable | None = None,
**kwargs,
):
"""
A wrapper over the DQN thus majority of the logic is in the DQNAgent.
Special treatment is required because the Rainbow agent uses categorical nets
which operate on probability distributions. Each action is taken as the estimate
from such distributions.
Parameters:
obs_space (DataSpace): Dataspace describing the input.
action_space (DataSpace): Dataspace describing the output.
state_transform (optional func):
reward_transform (optional func):
Keyword arguments:
pre_network_fn (function that takes input_shape and returns network):
Used to preprocess state before it is used in the value- and advantage-function in the dueling nets.
hidden_layers (tuple of ints): Shape of the hidden layers in fully connected network. Default: (100, 100).
lr (default: 1e-3): Learning rate value.
gamma (float): Discount factor. Default: 0.99.
tau (float): Soft-copy factor. Default: 0.002.
update_freq (int): Number of steps between each learning step. Default 1.
batch_size (int): Number of samples to use at each learning step. Default: 80.
buffer_size (int): Number of most recent samples to keep in memory for learning. Default: 1e5.
warm_up (int): Number of samples to observe before starting any learning step. Default: 0.
number_updates (int): How many times to use learning step in the learning phase. Default: 1.
max_grad_norm (float): Maximum norm of the gradient used in learning. Default: 10.
using_double_q (bool): Whether to use Double Q Learning network. Default: True.
n_steps (int): Number of lookahead steps when estimating reward. See :class:`NStepBuffer`. Default: 3.
v_min (float): Lower bound for distributional value V. Default: -10.
v_max (float): Upper bound for distributional value V. Default: 10.
num_atoms (int): Number of atoms (discrete states) in the value V distribution. Default: 21.
"""
super().__init__(**kwargs)
self.device = self._register_param(kwargs, "device", DEVICE, update=True)
self.obs_space = obs_space
self.action_space = action_space
self.action_size = action_space.to_feature()
self.lr = float(self._register_param(kwargs, "lr", 3e-4))
self.gamma = float(self._register_param(kwargs, "gamma", 0.99))
self.tau = float(self._register_param(kwargs, "tau", 0.002))
self.update_freq = int(self._register_param(kwargs, "update_freq", 1))
self.batch_size = int(self._register_param(kwargs, "batch_size", 80, update=True))
self.buffer_size = int(self._register_param(kwargs, "buffer_size", int(1e5), update=True))
self.warm_up = int(self._register_param(kwargs, "warm_up", 0))
self.number_updates = int(self._register_param(kwargs, "number_updates", 1))
self.max_grad_norm = float(self._register_param(kwargs, "max_grad_norm", 10))
self.iteration: int = 0
self.using_double_q = bool(self._register_param(kwargs, "using_double_q", True))
self.state_transform = state_transform if state_transform is not None else lambda x: x
self.reward_transform = reward_transform if reward_transform is not None else lambda x: x
v_min = float(self._register_param(kwargs, "v_min", -10))
v_max = float(self._register_param(kwargs, "v_max", 10))
self.num_atoms = int(self._register_param(kwargs, "num_atoms", 21, drop=True))
self.z_atoms = torch.linspace(v_min, v_max, self.num_atoms, device=self.device)
self.z_delta = self.z_atoms[1] - self.z_atoms[0]
self.buffer = PERBuffer(**kwargs)
self.__batch_indices = torch.arange(self.batch_size, device=self.device)
self.n_steps = int(self._register_param(kwargs, "n_steps", 3))
self.n_buffer = NStepBuffer(n_steps=self.n_steps, gamma=self.gamma)
# Note that in case a pre_network is provided, e.g. a shared net that extracts pixels values,
# it should be explicitly passed in kwargs
kwargs["hidden_layers"] = to_numbers_seq(self._register_param(kwargs, "hidden_layers", (100, 100)))
self.net = RainbowNet(obs_space.shape, self.action_size, num_atoms=self.num_atoms, **kwargs)
self.target_net = RainbowNet(obs_space.shape, self.action_size, num_atoms=self.num_atoms, **kwargs)
self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr)
self.dist_probs = None
self._loss = float("nan")
@property
def loss(self):
return {"loss": self._loss}
@loss.setter
def loss(self, value):
if isinstance(value, dict):
value = value["loss"]
self._loss = value
def step(self, experience: Experience) -> None:
"""Letting the agent to take a step.
On some steps the agent will initiate learning step. This is dependent on
the `update_freq` value.
Parameters:
obs (ObservationType): Observation.
action (int): Discrete action associated with observation.
reward (float): Reward obtained for taking action at state.
next_obs (ObservationType): Observation in a state where the action took.
done: (bool) Whether in terminal (end of episode) state.
"""
assert isinstance(experience.action, int), "Rainbow expects discrete action (int)"
self.iteration += 1
t_obs = to_tensor(self.state_transform(experience.obs)).float().to("cpu")
t_next_obs = to_tensor(self.state_transform(experience.next_obs)).float().to("cpu")
reward = self.reward_transform(experience.reward)
# Delay adding to buffer to account for n_steps (particularly the reward)
self.n_buffer.add(
obs=t_obs.numpy(),
action=[int(experience.action)],
reward=[reward],
done=[experience.done],
next_obs=t_next_obs.numpy(),
)
if not self.n_buffer.available:
return
self.buffer.add(**self.n_buffer.get().get_dict())
if self.iteration < self.warm_up:
return
if len(self.buffer) >= self.batch_size and (self.iteration % self.update_freq) == 0:
for _ in range(self.number_updates):
self.learn(self.buffer.sample())
# Update networks only once - sync local & target
soft_update(self.target_net, self.net, self.tau)
def act(self, experience: Experience, eps: float = 0.0) -> Experience:
"""
Returns actions for given state as per current policy.
Parameters:
state: Current available state from the environment.
epislon: Epsilon value in the epislon-greedy policy.
"""
# Epsilon-greedy action selection
if self._rng.random() < eps:
# TODO: Update with action_space.sample() once implemented
assert len(self.action_space.shape) == 1, "Only 1D is supported right now"
action = self._rng.randint(self.action_space.low, self.action_space.high)
return experience.update(action=action)
t_obs = to_tensor(self.state_transform(experience.obs)).float().unsqueeze(0).to(self.device)
self.dist_probs = self.net.act(t_obs)
q_values = (self.dist_probs * self.z_atoms).sum(-1)
action = int(q_values.argmax(-1)) # Action maximizes state-action value Q(s, a)
return experience.update(action=action)
def learn(self, experiences: dict[str, list]) -> None:
"""
Parameters:
experiences: Contains all experiences for the agent. Typically sampled from the memory buffer.
Five keys are expected, i.e. `state`, `action`, `reward`, `next_state`, `done`.
Each key contains a array and all arrays have to have the same length.
"""
rewards = to_tensor(experiences["reward"]).float().to(self.device)
dones = to_tensor(experiences["done"]).type(torch.int).to(self.device)
obss = to_tensor(experiences["obs"]).float().to(self.device)
next_obss = to_tensor(experiences["next_obs"]).float().to(self.device)
actions = to_tensor(experiences["action"]).type(torch.long).to(self.device)
assert rewards.shape == dones.shape == (self.batch_size, 1)
assert obss.shape == next_obss.shape == (self.batch_size,) + self.obs_space.shape
assert actions.shape == (self.batch_size, 1) # Discrete domain
with torch.no_grad():
prob_next = self.target_net.act(next_obss)
q_next = (prob_next * self.z_atoms).sum(-1) * self.z_delta
if self.using_double_q:
duel_prob_next = self.net.act(next_obss)
a_next = torch.argmax((duel_prob_next * self.z_atoms).sum(-1), dim=-1)
else:
a_next = torch.argmax(q_next, dim=-1)
prob_next = prob_next[self.__batch_indices, a_next, :]
m = self.net.dist_projection(rewards, 1 - dones, self.gamma**self.n_steps, prob_next)
assert m.shape == (self.batch_size, self.num_atoms)
log_prob = self.net(obss, log_prob=True)
assert log_prob.shape == (self.batch_size,) + self.action_size + (self.num_atoms,)
log_prob = log_prob[self.__batch_indices, actions.squeeze(), :]
assert log_prob.shape == m.shape == (self.batch_size, self.num_atoms)
# Cross-entropy loss error and the loss is batch mean
error = -torch.sum(m * log_prob, 1)
assert error.shape == (self.batch_size,)
loss = error.mean()
assert loss >= 0
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.net.parameters(), self.max_grad_norm)
self.optimizer.step()
self._loss = float(loss.item())
if hasattr(self.buffer, "priority_update"):
assert (~torch.isnan(error)).any()
self.buffer.priority_update(experiences["index"], error.detach().cpu().numpy())
# Update networks - sync local & target
soft_update(self.target_net, self.net, self.tau)
def state_dict(self) -> dict[str, dict]:
"""Returns agent's state dictionary.
Returns:
State dicrionary for internal networks.
"""
return {"net": self.net.state_dict(), "target_net": self.target_net.state_dict()}
def log_metrics(self, data_logger: DataLogger, step: int, full_log: bool = False):
data_logger.log_value("loss/agent", self._loss, step)
if full_log and self.dist_probs is not None:
assert len(self.action_space.shape) == 1, "Only 1D actions currently supported"
action_size = self.action_size[0]
for action_idx in range(action_size):
dist = self.dist_probs[0, action_idx]
data_logger.log_value(f"dist/expected_{action_idx}", (dist * self.z_atoms).sum().item(), step)
data_logger.add_histogram(
f"dist/Q_{action_idx}",
min=self.z_atoms[0],
max=self.z_atoms[-1],
num=len(self.z_atoms),
sum=dist.sum(),
sum_squares=dist.pow(2).sum(),
bucket_limits=self.z_atoms + self.z_delta,
bucket_counts=dist,
global_step=step,
)
# This method, `log_metrics`, isn't executed on every iteration but just in case we delay plotting weights.
# It simply might be quite costly. Thread wisely.
if full_log:
for idx, layer in enumerate(self.net.value_net.layers):
if hasattr(layer, "weight"):
data_logger.create_histogram(f"value_net/layer_weights_{idx}", layer.weight.cpu(), step)
if hasattr(layer, "bias") and layer.bias is not None:
data_logger.create_histogram(f"value_net/layer_bias_{idx}", layer.bias.cpu(), step)
for idx, layer in enumerate(self.net.advantage_net.layers):
if hasattr(layer, "weight"):
data_logger.create_histogram(f"advantage_net/layer_{idx}", layer.weight.cpu(), step)
if hasattr(layer, "bias") and layer.bias is not None:
data_logger.create_histogram(f"advantage_net/layer_bias_{idx}", layer.bias.cpu(), step)
def get_state(self) -> AgentState:
"""Provides agent's internal state."""
return AgentState(
model=self.model,
obs_space=self.obs_space,
action_space=self.action_space,
config=self._config,
buffer=copy.deepcopy(self.buffer.get_state()),
network=copy.deepcopy(self.get_network_state()),
)
def get_network_state(self) -> NetworkState:
return NetworkState(net=dict(net=self.net.state_dict(), target_net=self.target_net.state_dict()))
@staticmethod
def from_state(state: AgentState) -> AgentBase:
config = copy.copy(state.config)
config.update({"obs_space": state.obs_space, "action_space": state.action_space})
agent = RainbowAgent(**config)
if state.network is not None:
agent.set_network(state.network)
if state.buffer is not None:
agent.set_buffer(state.buffer)
return agent
def set_network(self, network_state: NetworkState) -> None:
self.net.load_state_dict(network_state.net["net"])
self.target_net.load_state_dict(network_state.net["target_net"])
def set_buffer(self, buffer_state: BufferState) -> None:
self.buffer = BufferFactory.from_state(buffer_state)
def save_state(self, path: str) -> None:
"""Saves agent's state into a file.
Parameters:
path: String path where to write the state.
"""
agent_state = self.get_state()
torch.save(agent_state, path)
def load_state(self, path: str) -> None:
"""Loads state from a file under provided path.
Parameters:
path: String path indicating where the state is stored.
"""
agent_state = torch.load(path)
self._config = agent_state.get("config", {})
self.__dict__.update(**self._config)
self.net.load_state_dict(agent_state["net"])
self.target_net.load_state_dict(agent_state["target_net"])
def save_buffer(self, path: str) -> None:
"""Saves data from the buffer into a file under provided path.
Parameters:
path: String path where to write the buffer.
"""
import json
dump = self.buffer.dump_buffer(serialize=True)
with open(path, "w") as f:
json.dump(dump, f)
def load_buffer(self, path: str) -> None:
"""Loads data into the buffer from provided file path.
Parameters:
path: String path indicating where the buffer is stored.
"""
import json
with open(path, "r") as f:
buffer_dump = json.load(f)
self.buffer.load_buffer(buffer_dump)
def __eq__(self, o: object) -> bool:
return (
super().__eq__(o)
and isinstance(o, type(self))
and self._config == o._config
and self.buffer == o.buffer
and self.get_network_state() == o.get_network_state()
)