-
Notifications
You must be signed in to change notification settings - Fork 17
/
tasks.py
472 lines (414 loc) · 13 KB
/
tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
"""Latch tasks are decorators to turn functions into workflow 'nodes'.
Each task is containerized, versioned and registered with `Flyte`_ when a
workflow is uploaded to Latch. Containerized tasks are then executed on
arbitrary instances as `Kubernetes Pods`_, scheduled using `flytepropeller`_.
The type of instance that the task executes on (eg. number of available
resources, presence of GPU) can be controlled by invoking one of the set of
exported decorators.
..
from latch import medium_task
@medium_task
def my_task(a: int) -> str:
...
.. _Kubernetes Pods:
https://kubernetes.io/docs/concepts/workloads/pods/
.. _flytepropeller:
https://github.com/flyteorg/flytepropeller
.. _Flyte:
https://docs.flyte.org/en/latest/
"""
import datetime
import functools
from typing import Union
from warnings import warn
from flytekit import task
from flytekitplugins.pod import Pod
from kubernetes.client.models import (
V1Container,
V1PodSpec,
V1ResourceRequirements,
V1Toleration,
)
def _get_large_gpu_pod() -> Pod:
"""g5.8xlarge,g5.16xlarge on-demand"""
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={
"cpu": "31",
"memory": "120Gi",
"nvidia.com/gpu": "1",
"ephemeral-storage": "1500Gi",
},
limits={
"cpu": "64",
"memory": "256Gi",
"nvidia.com/gpu": "1",
"ephemeral-storage": "2000Gi",
},
)
primary_container.resources = resources
return Pod(
pod_spec=V1PodSpec(
containers=[primary_container],
tolerations=[V1Toleration(effect="NoSchedule", key="ng", value="gpu-big")],
),
primary_container_name="primary",
)
def _get_small_gpu_pod() -> Pod:
"""g4dn.2xlarge on-demand"""
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={
"cpu": "7",
"memory": "30Gi",
"nvidia.com/gpu": "1",
"ephemeral-storage": "1500Gi",
},
limits={
"cpu": "7",
"memory": "30Gi",
"nvidia.com/gpu": "1",
"ephemeral-storage": "1500Gi",
},
)
primary_container.resources = resources
return Pod(
pod_spec=V1PodSpec(
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="gpu-small")
],
),
primary_container_name="primary",
)
def _get_large_pod() -> Pod:
"""[ "c6i.24xlarge", "c5.24xlarge", "c5.metal", "c5d.24xlarge", "c5d.metal" ]"""
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={"cpu": "90", "memory": "170Gi", "ephemeral-storage": "4500Gi"},
limits={"cpu": "90", "memory": "170Gi", "ephemeral-storage": "4500Gi"},
)
primary_container.resources = resources
return Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="cpu-96-spot")
],
),
primary_container_name="primary",
)
def _get_medium_pod() -> Pod:
"""[ "m5.8xlarge", "m5ad.8xlarge", "m5d.8xlarge", "m5n.8xlarge", "m5dn.8xlarge", "m5a.8xlarge" ]"""
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={"cpu": "30", "memory": "100Gi", "ephemeral-storage": "1500Gi"},
limits={"cpu": "30", "memory": "100Gi", "ephemeral-storage": "1500Gi"},
)
primary_container.resources = resources
return Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="cpu-32-spot")
],
),
primary_container_name="primary",
)
def _get_small_pod() -> Pod:
"""any available instance"""
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={"cpu": "2", "memory": "4Gi", "ephemeral-storage": "100Gi"},
limits={"cpu": "2", "memory": "4Gi", "ephemeral-storage": "100Gi"},
)
primary_container.resources = resources
return Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
),
primary_container_name="primary",
)
large_gpu_task = functools.partial(task, task_config=_get_large_gpu_pod())
"""This task will get scheduled on a large GPU-enabled node.
This node is not necessarily dedicated to the task, but the node itself will be
on-demand.
.. list-table:: Title
:widths: 20 20 20 20 20
:header-rows: 1
* - Type
- CPU
- RAM
- GPU
- On-Demand
* - Request
- 31
- 120Gi
- 1
- True
* - Limit
- 64
- 256Gi
- 1
- True
"""
small_gpu_task = functools.partial(task, task_config=_get_small_gpu_pod())
"""This task will get scheduled on a small GPU-enabled node.
This node will be dedicated to the task. No other tasks will be allowed to run
on it.
.. list-table:: Title
:widths: 20 20 20 20 20
:header-rows: 1
* - Type
- CPU
- RAM
- GPU
- On-Demand
* - Request
- 7
- 30Gi
- 1
- True
* - Limit
- 8
- 32Gi
- 1
- True
"""
large_task = functools.partial(task, task_config=_get_large_pod())
"""This task will get scheduled on a large node.
This node will be dedicated to the task. No other tasks will be allowed to run
on it.
.. list-table:: Title
:widths: 20 20 20 20 20
:header-rows: 1
* - Type
- CPU
- RAM
- GPU
- On-Demand
* - Request
- 90
- 176Gi
- 0
- True
* - Limit
- 96
- 196Gi
- 0
- True
"""
medium_task = functools.partial(task, task_config=_get_medium_pod())
"""This task will get scheduled on a medium node.
This node will be dedicated to the task. No other tasks will be allowed to run
on it.
.. list-table:: Title
:widths: 20 20 20 20 20
:header-rows: 1
* - Type
- CPU
- RAM
- GPU
- On-Demand
* - Request
- 8
- 32Gi
- 0
- True
* - Limit
- 12
- 64Gi
- 0
- True
"""
small_task = functools.partial(task, task_config=_get_small_pod())
"""This task will get scheduled on a small node.
.. list-table:: Title
:widths: 20 20 20 20 20
:header-rows: 1
* - Type
- CPU
- RAM
- GPU
- On-Demand
* - Request
- 2
- 4Gi
- 0
- False
* - Limit
- 4
- 8Gi
- 0
- False
"""
def custom_memory_optimized_task(cpu: int, memory: int):
"""Returns a custom task configuration requesting
the specified CPU/RAM allocations. This task
can utilize fewer cpu cores (62) than `custom_task`s (95)
but can use more RAM (up to 490 GiB) than `custom_task`s (up to 179 GiB).
This is ideal for processes which utilize a lot of memory per thread.
Args:
cpu: An integer number of cores to request, up to 63 cores
memory: An integer number of Gibibytes of RAM to request, up to 511 GiB
"""
warn(
"`custom_memory_optimized_task` is deprecated and will be removed in a"
" future release: use `custom_task` instead",
DeprecationWarning,
stacklevel=2,
)
if cpu > 62:
raise ValueError(
f"custom memory optimized task requires too many CPU cores: {cpu} (max 62)"
)
elif memory > 490:
raise ValueError(
f"custom memory optimized task requires too much RAM: {memory} GiB (max 490"
" GiB)"
)
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={"cpu": str(cpu), "memory": f"{memory}Gi"},
limits={"cpu": str(cpu), "memory": f"{memory}Gi"},
)
primary_container.resources = resources
task_config = Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="mem-512-spot")
],
),
primary_container_name="primary",
)
return functools.partial(task, task_config=task_config)
def custom_task(
cpu: int,
memory: int,
*,
storage_gib: int = 500,
timeout: Union[datetime.timedelta, int] = 0,
):
"""Returns a custom task configuration requesting
the specified CPU/RAM allocations
Args:
cpu: An integer number of cores to request, up to 95 cores
memory: An integer number of Gibibytes of RAM to request, up to 490 GiB
storage: An integer number of Gibibytes of storage to request, up to 4949 GiB
"""
primary_container = V1Container(name="primary")
resources = V1ResourceRequirements(
requests={
"cpu": str(cpu),
"memory": f"{memory}Gi",
"ephemeral-storage": f"{storage_gib}Gi",
},
limits={
"cpu": str(cpu),
"memory": f"{memory}Gi",
"ephemeral-storage": f"{storage_gib}Gi",
},
)
primary_container.resources = resources
if cpu <= 31 and memory <= 127 and storage_gib <= 1949:
task_config = Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="cpu-32-spot")
],
),
primary_container_name="primary",
)
elif cpu <= 95 and memory <= 179 and storage_gib <= 4949:
task_config = Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="cpu-96-spot")
],
),
primary_container_name="primary",
)
elif cpu <= 62 and memory <= 490 and storage_gib <= 4949:
task_config = Pod(
annotations={
"io.kubernetes.cri-o.userns-mode": (
"private:uidmapping=0:1048576:65536;gidmapping=0:1048576:65536"
)
},
pod_spec=V1PodSpec(
runtime_class_name="sysbox-runc",
containers=[primary_container],
tolerations=[
V1Toleration(effect="NoSchedule", key="ng", value="mem-512-spot")
],
),
primary_container_name="primary",
)
else:
if memory > 490:
raise ValueError(
f"custom task requires too much RAM: {memory} GiB (max 490 GiB)"
)
elif storage_gib > 4949:
raise ValueError(
f"custom task requires too much storage: {storage_gib} GiB (max 4949"
" GiB)"
)
elif cpu > 95:
raise ValueError(f"custom task requires too many CPU cores: {cpu} (max 95)")
elif memory > 179 and cpu > 62:
raise ValueError(
f"could not resolve cpu for high memory machine: requested {cpu} cores"
" (max 62)"
)
elif cpu > 62 and memory > 179:
raise ValueError(
f"could not resolve memory for high cpu machine: requested {memory} GiB"
" (max 179 GiB)"
)
else:
raise ValueError(
f"custom task resource limit is too high: {cpu} (max 95) cpu cores,"
f" {memory} GiB (max 179 GiB) memory, or {storage_gib} GiB storage (max"
" 4949 GiB)"
)
return functools.partial(task, task_config=task_config, timeout=timeout)