-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
79 lines (66 loc) · 3.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import sys
from pathlib import Path
code_folder = Path(__file__).parent
sys.path.append(str(code_folder/"tr0n/modules/BigGAN_utils"))
sys.path.append(str(code_folder/"tr0n/modules/BLIP_utils"))
sys.path.append(str(code_folder/"tr0n/modules/StyleGAN_utils"))
sys.path.append(str(code_folder/"tr0n/modules/NVAE_utils"))
sys.path.append(str(code_folder/"tr0n/modules/sgxl_utils"))
import torch
import random
import numpy as np
from tr0n.config import parse_args
from torch.utils.tensorboard.writer import SummaryWriter
from tr0n.modules.datasets.data_factory import DataFactory
from tr0n.modules.models.model_factory import ModelFactory
from tr0n.modules.models.loss import LossFactory
from tr0n.modules.optimizers.optimizer_factory import OptimizerFactory, SchedulerFactory
from tr0n.modules.trainers.trainer_factory import TrainerFactory
def main():
config = parse_args()
os.environ['TOKENIZERS_PARALLELISM'] = "false"
if not config.no_tensorboard:
writer = SummaryWriter(log_dir=config.tb_log_dir)
else:
writer = None
if config.seed >= 0:
torch.manual_seed(config.seed)
np.random.seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
random.seed(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
train_data_loader = DataFactory.get_loader(config, train=True)
val_data_loader = DataFactory.get_loader(config, train=False)
if hasattr(train_data_loader.dataset, 'cov'):
clip_noise_cov = train_data_loader.dataset.cov
else:
clip_noise_cov = None
device = "cuda" if torch.cuda.is_available() else "cpu"
model = ModelFactory.get_model(config, device, clip_noise_cov)
params_translator = list(model.translator.parameters())
optimizer_translator = OptimizerFactory.get_optimizer(config.optim, params_translator, device, config.lr, config.momentum, config.weight_decay, config.sgld_noise_std)
num_training_steps = len(train_data_loader) * config.num_epochs
scheduler_translator = SchedulerFactory.get_scheduler(config.scheduler, optimizer_translator, num_training_steps)
optimizers={'translator': optimizer_translator}
schedulers={'translator': scheduler_translator}
train_loss = LossFactory.get_loss(config.train_loss, config)
val_loss = LossFactory.get_loss(config.val_loss, config)
trainer = TrainerFactory.get_trainer(model, train_loss, val_loss, optimizers,
dataset_name=config.dataset_name,
dec_type=config.dec_type,
config=config,
train_data_loader=train_data_loader,
val_data_loader=val_data_loader,
lr_schedulers=schedulers,
device=device,
writer=writer)
if config.load_epoch is not None:
if config.load_epoch > 0:
trainer.load_checkpoint("checkpoint-epoch{}.pth".format(config.load_epoch))
else:
trainer.load_checkpoint("model_best.pth")
trainer.train()
if __name__ == '__main__':
main()