-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathlinear_sigmoid_svgd.yaml
54 lines (47 loc) · 1001 Bytes
/
linear_sigmoid_svgd.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# @package _global_
#
# to execute this experiment run:
# python train.py experiment=linear_bayes
defaults:
- override /model: bayesian_linear_velocity
- override /datamodule: linear_unidentifiable_velocity.yaml
- override /logger:
- wandb
- csv
- override /trainer: gpu
name: "linear_sigmoid_svgd"
seed: 13
datamodule:
batch_size: 500 #500
T: 2
p: 20
vars_to_deidentify: [0, 1, 2]
sparsity: 0.9 # 0.9 --> 1024 Nodes for p=20 and [0,1,2]
system: "sigmoid_linear"
sigma: 0
burn_in: 1
seed: 13
# best
model:
lr: 1e-3
alpha: 1e-4
svgd_reg: 0 # 1e5
l1_reg: 10 # 1e-1
l2_reg: 0
kl_reg: 0 # 1e-5
svgd_gamma: 3000 # -1 to set to med
temperature: 0.01
n_ens: 1024
eval_batch_size: 1024
k_hidden: 20
hyper: "linear"
hyper_hidden_dim: [64, 64, 64]
bias: True
svgd: True
optimizer: "adam"
trainer:
max_epochs: 1000
check_val_every_n_epoch: 5
logger:
wandb:
tags: ["kl", "analytic", "sigmoid", "svgd", "${name}", "v_final_3"]