forked from rgerosa/boostedWWAnalysis
-
Notifications
You must be signed in to change notification settings - Fork 5
/
g1_doDatacard_width.py
688 lines (523 loc) · 31.8 KB
/
g1_doDatacard_width.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#! /usr/bin/env python
import os
import glob
import math
import array
import ROOT
import ntpath
import sys
import string
import subprocess
from subprocess import Popen
from optparse import OptionParser
from ROOT import gROOT, TPaveLabel, gStyle, gSystem, TGaxis, TStyle, TLatex, TString, TF1,TFile,TLine, TLegend, TH1D,TH2D,THStack,TChain, TCanvas, TMatrixDSym, TMath, TText, TPad, RooFit, RooArgSet, RooArgList, RooArgSet, RooAbsData, RooAbsPdf, RooAddPdf, RooWorkspace, RooExtendPdf,RooCBShape, RooLandau, RooFFTConvPdf, RooGaussian, RooBifurGauss, RooArgusBG,RooDataSet, RooExponential,RooBreitWigner, RooVoigtian, RooNovosibirsk, RooRealVar,RooFormulaVar, RooDataHist, RooHistPdf,RooCategory, RooChebychev, RooSimultaneous, RooGenericPdf,RooConstVar, RooKeysPdf, RooHistPdf, RooEffProd, RooProdPdf, TIter, kTRUE, kFALSE, kGray, kRed, kDashed, kGreen,kAzure, kOrange, kBlack,kBlue,kYellow,kCyan, kMagenta, kWhite, TList
############################################
# Job steering #
############################################
parser = OptionParser()
parser.add_option('-a', '--additioninformation',action="store",type="string",dest="additioninformation",default="EXO")
parser.add_option('-b', action='store_true', dest='noX', default=False, help='no X11 windows')
parser.add_option('-c', '--channel',action="store",type="string",dest="channel",default="em")
parser.add_option('--inPath', action="store",type="string",dest="inPath",default="./")
parser.add_option('--datacardPath', action="store",type="string",dest="datacardPath",default="cards_em_EXO_allCat_v2_ExpTail_g1_rereco_c0p5_modelIndependent/")
parser.add_option('--category', action="store",type="string",dest="category",default="HP")
(options, args) = parser.parse_args()
#######################################################################
ROOT.gSystem.Load(options.inPath+"/PDFs/HWWLVJRooPdfs_cxx.so")
ROOT.gSystem.Load(options.inPath+"/PDFs/PdfDiagonalizer_cc.so")
ROOT.gSystem.Load(options.inPath+"/PDFs/Util_cxx.so")
from ROOT import draw_error_band, draw_error_band_extendPdf, draw_error_band_Decor, draw_error_band_shape_Decor, Calc_error_extendPdf, Calc_error, RooErfExpPdf, RooAlpha, RooAlpha4ErfPowPdf, RooAlpha4ErfPow2Pdf, RooAlpha4ErfPowExpPdf, PdfDiagonalizer, RooPowPdf, RooPow2Pdf, RooErfPowExpPdf, RooErfPowPdf, RooErfPow2Pdf, RooQCDPdf, RooUser1Pdf, RooBWRunPdf,RooAnaExpNPdf,RooExpNPdf, RooAlpha4ExpNPdf, RooExpTailPdf, RooAlpha4ExpTailPdf, Roo2ExpPdf, RooAlpha42ExpPdf
#######################################################################
##### Point of Mass to be Analyzed
mass = [1000,1100,1200,1300,1400,1500,1600,1700,1800,1900,2000,2100,2200,2300,2400,2500,800,900]
GammaOverMass = [0.001,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40]
### how to run it: python g1_doDatacard_width.py wwlvj_BulkG_WW_inclusive_c0p2 -b --datacardPath cards_em_EXO_allCat_v2_ExpTail_g1_rereco_c0p5/ --channel em
## Set basic TDR style for canvas, pad ..etc ..
def setTDRStyle():
gStyle.SetCanvasBorderMode(0);
gStyle.SetCanvasColor(kWhite);
gStyle.SetCanvasDefH(600); #Height of canvas
gStyle.SetCanvasDefW(600); #Width of canvas
gStyle.SetCanvasDefX(0); #POsition on screen
gStyle.SetCanvasDefY(0);
#For the Pad:
gStyle.SetPadBorderMode(0);
gStyle.SetPadColor(kWhite);
gStyle.SetPadGridX(False);
gStyle.SetPadGridY(False);
gStyle.SetGridColor(0);
gStyle.SetGridStyle(3);
gStyle.SetGridWidth(1);
#For the frame:
gStyle.SetFrameBorderMode(0);
gStyle.SetFrameBorderSize(1);
gStyle.SetFrameFillColor(0);
gStyle.SetFrameFillStyle(0);
gStyle.SetFrameLineColor(1);
gStyle.SetFrameLineStyle(1);
gStyle.SetFrameLineWidth(1);
#For the histo:
gStyle.SetHistLineColor(1);
gStyle.SetHistLineStyle(0);
gStyle.SetHistLineWidth(1);
gStyle.SetEndErrorSize(2);
gStyle.SetErrorX(0.);
gStyle.SetMarkerStyle(20);
#For the fit/function:
gStyle.SetOptFit(1);
gStyle.SetFitFormat("5.4g");
gStyle.SetFuncColor(2);
gStyle.SetFuncStyle(1);
gStyle.SetFuncWidth(1);
#For the date:
gStyle.SetOptDate(0);
#For the statistics box:
gStyle.SetOptFile(0);
gStyle.SetOptStat(0); #To display the mean and RMS:
gStyle.SetStatColor(kWhite);
gStyle.SetStatFont(42);
gStyle.SetStatFontSize(0.025);
gStyle.SetStatTextColor(1);
gStyle.SetStatFormat("6.4g");
gStyle.SetStatBorderSize(1);
gStyle.SetStatH(0.1);
gStyle.SetStatW(0.15);
#Margins:
gStyle.SetPadTopMargin(0.05);
gStyle.SetPadBottomMargin(0.13);
gStyle.SetPadLeftMargin(0.18);
gStyle.SetPadRightMargin(0.06);
#For the Global title:
gStyle.SetOptTitle(0);
gStyle.SetTitleFont(42);
gStyle.SetTitleColor(1);
gStyle.SetTitleTextColor(1);
gStyle.SetTitleFillColor(10);
gStyle.SetTitleFontSize(0.05);
#For the axis titles:
gStyle.SetTitleColor(1, "XYZ");
gStyle.SetTitleFont(42, "XYZ");
gStyle.SetTitleSize(0.03, "XYZ");
gStyle.SetTitleXOffset(0.9);
gStyle.SetTitleYOffset(1.5);
#For the axis labels:
gStyle.SetLabelColor(1, "XYZ");
gStyle.SetLabelFont(42, "XYZ");
gStyle.SetLabelOffset(0.007, "XYZ");
gStyle.SetLabelSize(0.03, "XYZ");
#For the axis:
gStyle.SetAxisColor(1, "XYZ");
gStyle.SetStripDecimals(kTRUE);
gStyle.SetTickLength(0.03, "XYZ");
gStyle.SetNdivisions(510, "XYZ");
gStyle.SetPadTickX(1); #To get tick marks on the opposite side of the frame
gStyle.SetPadTickY(1);
#Change for log plots:
gStyle.SetOptLogx(0);
gStyle.SetOptLogy(0);
gStyle.SetOptLogz(0);
#Postscript options:
gStyle.SetPaperSize(20.,20.);
gStyle.cd();
##### Get Lumi for banner title
def GetLumi():
if options.channel=="el": return 19.7;
elif options.channel=="mu": return 19.7;
elif options.channel=="em": return 19.7;
#### in order to make the banner on the plots
def banner4Plot(iswithpull=0):
print "############### draw the banner ########################"
if iswithpull:
if options.channel=="el":
banner = TLatex(0.3,0.96,("CMS Preliminary, %.1f fb^{-1} at #sqrt{s} = 8 TeV, W#rightarrow e #nu "%(GetLumi())));
elif options.channel=="mu":
banner = TLatex(0.3,0.96,("CMS Preliminary, %.1f fb^{-1} at #sqrt{s} = 8 TeV, W#rightarrow #mu #nu "%(GetLumi())));
elif options.channel=="em":
banner = TLatex(0.3,0.96,("CMS Preliminary, %.1f fb^{-1} at #sqrt{s} = 8 TeV, W#rightarrow #mu,e #nu "%(GetLumi())));
banner.SetNDC(); banner.SetTextSize(0.04);
else:
if options.channel=="el":
banner = TLatex(0.22,0.96,("CMS Preliminary, %.1f fb^{-1} at #sqrt{s} = 8 TeV, W#rightarrow e #nu "%(GetLumi())));
if options.channel=="mu":
banner = TLatex(0.22,0.96,("CMS Preliminary, %.1f fb^{-1} at #sqrt{s} = 8 TeV, W#rightarrow #mu #nu "%(GetLumi())));
if options.channel=="em":
banner = TLatex(0.22,0.96,("CMS Preliminary, %.1f fb^{-1} at #sqrt{s} = 8 TeV, W#rightarrow #mu,e #nu "%(GetLumi())));
banner.SetNDC(); banner.SetTextSize(0.033);
return banner;
#### just drawing canvas with no pull
def draw_canvas(in_obj,in_directory,in_file_name,is_range=0,logy=0):
cMassFit = TCanvas("cMassFit","cMassFit", 600,600);
if is_range:
h2=TH2D("h2","",100,400,1400,4,0.00001,4);
h2.Draw();
in_obj.Draw("same")
else :
in_obj.Draw()
in_obj.GetXaxis().SetTitleSize(0.045);
in_obj.GetXaxis().SetTitleOffset(1.15);
in_obj.GetXaxis().SetLabelSize(0.04);
in_obj.GetYaxis().SetTitleSize(0.045);
in_obj.GetYaxis().SetTitleOffset(1.40);
in_obj.GetYaxis().SetLabelSize(0.04);
banner = banner4Plot();
banner.Draw();
Directory=TString(in_directory);
if not Directory.EndsWith("/"):Directory=Directory.Append("/");
if not os.path.isdir(Directory.Data()):
os.system("mkdir -p "+Directory.Data());
rlt_file = TString();
rlt_file.Form("%s_%s"%(Directory,in_file_name));
if rlt_file.EndsWith(".root"):
rlt_file.ReplaceAll(".root","_rlt_without_pull_and_paramters.png");
else:
rlt_file.ReplaceAll(".root","");
rlt_file = rlt_file.Append(".png");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".png",".pdf");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".pdf",".root");
cMassFit.SaveAs(rlt_file.Data());
if logy:
cMassFit.SetLogy() ;
cMassFit.Update();
rlt_file.ReplaceAll(".root","_log.root");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".root",".pdf");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".pdf",".png");
cMassFit.SaveAs(rlt_file.Data());
#### draw canvas with plots with pull
def draw_canvas_with_pull(mplot, mplot_pull,in_directory, in_file_name, in_model_name="",logy=0):# mplot + pull
mplot.GetXaxis().SetTitleOffset(1.1);
mplot.GetYaxis().SetTitleOffset(1.3);
mplot.GetXaxis().SetTitleSize(0.05);
mplot.GetYaxis().SetTitleSize(0.05);
mplot.GetXaxis().SetLabelSize(0.045);
mplot.GetYaxis().SetLabelSize(0.045);
mplot_pull.GetXaxis().SetLabelSize(0.15);
mplot_pull.GetYaxis().SetLabelSize(0.15);
mplot_pull.GetYaxis().SetTitleSize(0.15);
mplot_pull.GetYaxis().SetNdivisions(205);
cMassFit = TCanvas("cMassFit","cMassFit", 600,600);
pad1=TPad("pad1","pad1",0.,0. ,0.99,0.24);
pad2=TPad("pad2","pad2",0.,0.24,0.99,1. );
pad1.Draw();
pad2.Draw();
pad2.cd();
mplot.Draw();
banner = banner4Plot(1);
banner.Draw();
pad1.cd();
mplot_pull.Draw();
## create the directory where store the plots
Directory = TString(in_directory);
if not Directory.EndsWith("/"):Directory = Directory.Append("/");
if not os.path.isdir(Directory.Data()):
os.system("mkdir -p "+Directory.Data());
rlt_file = TString();
rlt_file.Form("%s_%s"%(Directory,in_file_name));
if rlt_file.EndsWith(".root"):
TString(in_model_name).ReplaceAll(".root","");
rlt_file.ReplaceAll(".root","_"+in_model_name+"_with_pull.png");
else:
TString(in_model_name).ReplaceAll(".root","");
rlt_file.ReplaceAll(".root","");
rlt_file=rlt_file.Append("_"+in_model_name+"_with_pull.png");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".png",".pdf");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".pdf",".root");
cMassFit.SaveAs(rlt_file.Data());
string_file_name = TString(in_file_name);
if string_file_name.EndsWith(".root"):
string_file_name.ReplaceAll(".root","_"+in_model_name);
else:
string_file_name.ReplaceAll(".root","");
string_file_name.Append("_"+in_model_name);
if logy:
pad2.SetLogy() ;
pad2.Update();
cMassFit.Update();
rlt_file.ReplaceAll(".root","_log.root");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".root",".pdf");
cMassFit.SaveAs(rlt_file.Data());
rlt_file.ReplaceAll(".pdf",".png");
cMassFit.SaveAs(rlt_file.Data());
draw_canvas(mplot,in_directory,string_file_name.Data(),0,logy);
### in order to get the pull
def get_pull(rrv_x, mplot_orig):
hpull = mplot_orig.pullHist();
x = ROOT.Double(0.); y = ROOT.Double(0) ;
for ipoint in range(0,hpull.GetN()):
hpull.GetPoint(ipoint,x,y);
if(y == 0): hpull.SetPoint(ipoint,x,10)
mplot_pull = rrv_x.frame(RooFit.Title("Pull Distribution"), RooFit.Bins(int(rrv_x.getBins())));
medianLine = TLine(rrv_x.getMin(),0.,rrv_x.getMax(),0); medianLine.SetLineWidth(2); medianLine.SetLineColor(kRed);
mplot_pull.addObject(medianLine);
mplot_pull.addPlotable(hpull,"P");
mplot_pull.SetTitle("PULL");
mplot_pull.GetXaxis().SetTitle("");
mplot_pull.GetYaxis().SetRangeUser(-5,5);
mplot_pull.GetYaxis().SetTitleSize(0.10);
mplot_pull.GetYaxis().SetLabelSize(0.10);
mplot_pull.GetXaxis().SetTitleSize(0.10);
mplot_pull.GetXaxis().SetLabelSize(0.10);
mplot_pull.GetYaxis().SetTitleOffset(0.40);
mplot_pull.GetYaxis().SetTitle("#frac{data-fit}{#sigma_{data}}");
mplot_pull.GetYaxis().CenterTitle();
return mplot_pull;
#### Main Code
if __name__ == '__main__':
print "################# Programmed to generate datacard for large widths ";
## make the list of the exsisting datacard
command = "ls %s/%s | grep %s | grep -v other | grep -v combo | grep -v counting | grep -v _W_ | grep %s | grep txt > %s/%s/temp_datacard_list.txt"%(options.inPath,options.datacardPath,sys.argv[1],options.channel,options.inPath,options.datacardPath);
print command ;
os.system(command);
## make the list of the exsisting workspaces
command = "ls %s/%s | grep %s | grep -v other | grep -v combo | grep -v counting | grep -v _W_ | grep %s | grep root > %s/%s/temp_workspace_list.txt"%(options.inPath,options.datacardPath,sys.argv[1],options.channel,options.inPath,options.datacardPath);
print command ;
os.system(command);
setTDRStyle();
## list of datacard and workspaces
list_of_datacard = [] ;
list_of_workspace = [] ;
datacardFile = open("%s/%s/temp_datacard_list.txt"%(options.inPath,options.datacardPath));
for fileLine in datacardFile :
if not fileLine.find("#") : continue ;
if fileLine.split()[0] != "" and fileLine.find("txt") !=-1 and fileLine.find("unbin") !=-1 :
list_of_datacard.append(fileLine.split()[0]);
workspaceFile = open("%s/%s/temp_workspace_list.txt"%(options.inPath,options.datacardPath));
for fileLine in workspaceFile :
if not fileLine.find("#") : continue ;
if fileLine.split()[0] != "" and fileLine.find("root") !=-1 and fileLine.find("workspace") !=-1 :
list_of_workspace.append(fileLine.split()[0]);
### print the new datacard with the new workspace names
idatacard = 0 ;
datasetname = "";
for datacard in list_of_datacard :
for gammaVal in GammaOverMass:
newdatacard = TString(datacard).ReplaceAll(".txt","_W%.3f.txt"%gammaVal);
newdatacard.ReplaceAll("0.","_");
newdatacard.ReplaceAll("_txt",".txt");
datacard_old = open("%s/%s/%s"%(options.inPath,options.datacardPath,datacard),"r");
datacardfile = open("%s/%s/%s"%(options.inPath,options.datacardPath,newdatacard),"a");
for line_old in datacard_old:
if line_old.find("workspace")!=-1:
newworkspace = TString(list_of_workspace[idatacard]).ReplaceAll(".root","_W%.3f.root"%gammaVal);
newworkspace.ReplaceAll("0.","_");
newworkspace.ReplaceAll("_root",".root");
if line_old.split()[1].find("Bulk")!=-1:
datacardfile.write("%s %s %s %s %s"%(line_old.split()[0],line_old.split()[1],line_old.split()[2],newworkspace,line_old.split()[4]));
elif line_old.split()[1].find("data")!=-1:
datasetname = line_old.split()[1];
datacardfile.write("\n%s %s %s %s %s\n"%(line_old.split()[0],line_old.split()[1],line_old.split()[2],newworkspace,line_old.split()[4]));
else:
datacardfile.write("\n%s %s %s %s %s"%(line_old.split()[0],line_old.split()[1],line_old.split()[2],newworkspace,line_old.split()[4]));
elif line_old.find("rate")!=-1:
datacardfile.write("rate 1 %s %s %s %s\n"%(line_old.split()[2],line_old.split()[3],line_old.split()[4],line_old.split()[5]));
continue ;
elif line_old.find("lumi_8TeV")!=-1:
datacardfile.write("CMS_eff_width lnN 1.15 - - - -\n");
datacardfile.write(line_old);
else:
datacardfile.write(line_old);
idatacard = idatacard+1;
### make the new workspaces --> loop on the old, create empty new ones
iMass = 0 ;
for workspace in list_of_workspace :
for gammaVal in GammaOverMass:
newfilename = TString(workspace).ReplaceAll(".root","_W%.3f.root"%gammaVal);
newfilename.ReplaceAll("0.","_");
newfilename.ReplaceAll("_root",".root");
old_file = TFile("%s/%s/%s"%(options.inPath,options.datacardPath,workspace),"READ");
new_file = TFile("%s/%s/%s"%(options.inPath,options.datacardPath,newfilename),"RECREATE");
old_workspace = old_file.Get("workspace4limit_");
new_workspace = RooWorkspace("workspace4limit_","workspace4limit_");
new_file.cd();
### copy all the pdfs + parameter
old_workspace.Print();
pdf_workspace = old_workspace.allPdfs();
par = pdf_workspace.createIterator();
par.Reset();
param = par.Next()
while (param):
if not TString(par.GetName()).Contains("BulkWW_xww") and not TString(par.GetName()).Contains("BulkG_WW"):
getattr(new_workspace,"import")(param);
else:
RooDoubleCrystalBall = param;
param=par.Next()
## cycle on DoubleCB parameters -> copy them in a new set
sig_parameters = RooDoubleCrystalBall.getParameters(old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category));
sig_par = sig_parameters.createIterator();
sig_par.Reset();
sig_param = sig_par.Next();
while (sig_param):
if TString(sig_param.GetName()).Contains("rrv_mean_CB_BulkG_WW"): ## copy the mean value for the DoubleCB and BW
rrv_mean_BW = RooRealVar("rrv_mean_BW_BulkG_WW_"+options.channel+"_"+options.category,"rrv_mean_BW_BulkG_WW_"+options.channel+"_"+options.category,sig_param.getVal());
rrv_mean_CB = sig_param;
rrv_mean_CB.setRange(-100,100);
rrv_mean_CB.setVal(0.);
elif TString(sig_param.GetName()).Contains("rrv_sigma_CB_BulkG_WW"):
rrv_sigma_CB = sig_param;
elif TString(sig_param.GetName()).Contains("rrv_alpha1_CB_BulkG_WW"):
rrv_alpha1_CB = sig_param;
elif TString(sig_param.GetName()).Contains("rrv_alpha2_CB_BulkG_WW"):
rrv_alpha2_CB = sig_param;
elif TString(sig_param.GetName()).Contains("rrv_n1_CB_BulkG_WW"):
rrv_n1_CB = sig_param;
elif TString(sig_param.GetName()).Contains("rrv_n2_CB_BulkG_WW"):
rrv_n2_CB = sig_param;
sig_param = sig_par.Next();
### copy all the datasets
getattr(new_workspace,"import")(old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category));
## Breit Wigner Core --> mean and the resolution fixed
rrv_width_BW = RooRealVar("rrv_width_BW_BulkG_WW_"+options.channel+"_"+options.category,"rrv_width_BW_BulkG_WW_"+options.channel+"_"+options.category,mass[iMass]*gammaVal);
rrv_mean_BW.setConstant(kTRUE);
rrv_width_BW.setConstant(kTRUE);
## Breit Wigner Core --> mean sys are to be applied on the mean of BW
rrv_mean_scale_p1 = RooRealVar("CMS_sig_p1_jes","CMS_sig_p1_jes",0);
rrv_mean_scale_p1.setConstant(kTRUE);
rrv_mean_scale_p1.setError(1);
rrv_mean_scale_p2 = RooRealVar("CMS_sig_p1_scale_em","CMS_sig_p1_scale_em",0);
rrv_mean_scale_p2.setConstant(kTRUE);
rrv_mean_scale_p2.setError(1);
rrv_mean_scale_X1 = RooRealVar("rrv_mean_shift_scale_lep_BW_"+options.channel+"_"+options.category,"rrv_mean_shift_scale_lep_BW_"+options.channel+"_"+options.category,float(0.001));
rrv_mean_scale_X1.setConstant(kTRUE);
rrv_mean_scale_X2 = RooRealVar("rrv_mean_shift_scale_jes_BW_"+options.channel+"_"+options.category,"rrv_mean_shift_scale_jes_BW_"+options.channel+"_"+options.category,float(0.033));
rrv_mean_scale_X2.setConstant(kTRUE);
rrv_total_mean_CB = RooFormulaVar("rrv_total_mean_BW_"+options.channel,"@0*(1+@1*@2)*(1+@3*@4)", RooArgList(rrv_mean_BW,rrv_mean_scale_p1,rrv_mean_scale_X1,rrv_mean_scale_p2,rrv_mean_scale_X2));
bw = RooBreitWigner("bw_BulkWW_xww_"+options.channel,"bw_BulkG_WW_"+options.channel,old_workspace.var("rrv_mass_lvj"),rrv_total_mean_CB,rrv_width_BW);
### make resolution DoubleCB
rrv_sigma_scale_p1 = RooRealVar("CMS_sig_p2_scale_em","CMS_sig_p2_scale_em",0);
rrv_sigma_scale_p1.setConstant(kTRUE);
rrv_sigma_scale_p1.setError(1);
rrv_sigma_scale_p2 = RooRealVar("CMS_sig_p2_jer","CMS_sig_p2_jer",0);
rrv_sigma_scale_p3 = RooRealVar("CMS_sig_p2_jes","CMS_sig_p2_jes",0);
rrv_sigma_scale_p2.setConstant(kTRUE);
rrv_sigma_scale_p3.setConstant(kTRUE);
rrv_sigma_scale_p2.setError(1);
rrv_sigma_scale_p3.setError(1);
rrv_mean_sigma_X1 = RooRealVar("rrv_sigma_shift_lep_scale_CB"+options.channel+"_"+options.category,"rrv_sigma_shift_scale_CB"+options.channel+"_"+options.category,float(0.005));
rrv_mean_sigma_X2 = RooRealVar("rrv_sigma_shift_jes_CB"+options.channel+"_"+options.category,"rrv_sigma_shift_scale_CB"+options.channel+"_"+options.category,float(0.033));
rrv_mean_sigma_X3 = RooRealVar("rrv_sigma_shift_res_CB"+options.channel+"_"+options.category,"rrv_sigma_shift_res_CB"+options.channel+"_"+options.category,float(0.030));
rrv_mean_sigma_X1.setConstant(kTRUE);
rrv_mean_sigma_X2.setConstant(kTRUE);
rrv_mean_sigma_X3.setConstant(kTRUE);
rrv_total_sigma_CB = RooFormulaVar("rrv_total_sigma_CB"+options.channel+"_"+options.category,"@0*(1+@1*@2)*(1+@3*@4)*(1+@5*@6)", RooArgList(rrv_sigma_CB,rrv_sigma_scale_p1,rrv_mean_sigma_X1,rrv_sigma_scale_p2,rrv_mean_sigma_X2,rrv_sigma_scale_p3,rrv_mean_sigma_X3));
new_signal = ROOT.RooDoubleCrystalBall("DoubleCB_BulkG_WW_"+options.channel+"_"+options.category+"_mlvj","DoubleCB_BulkG_WW_"+options.channel+"_"+options.category+"_mlvj",old_workspace.var("rrv_mass_lvj"),rrv_mean_CB,rrv_total_sigma_CB,rrv_alpha1_CB,rrv_n1_CB,rrv_alpha2_CB,rrv_n2_CB);
### FFT ConvPdf
original_binnning = old_workspace.var("rrv_mass_lvj").getBin();
old_workspace.var("rrv_mass_lvj").setBins(1000,"cache");
model_pdf = RooFFTConvPdf("BulkWW_xww_%s_%s"%(options.channel,options.category),"BulkWW_xww_%s_%s"%(options.channel,options.category),old_workspace.var("rrv_mass_lvj"),bw,new_signal);
model_pdf.setBufferFraction(1.0);
old_workspace.var("rrv_mass_lvj").setBins(int(original_binnning));
model_pdf.SetName("BulkWW_xww_%s_%s"%(options.channel,options.category));
getattr(new_workspace,"import")(model_pdf);
### iterate on the workspace element parameters
print "----------- Parameter Workspace -------------";
parameters_workspace = new_workspace.allVars();
par = parameters_workspace.createIterator();
par.Reset();
param = par.Next()
while (param):
param.Print();
param=par.Next()
print "---------------------------------------------";
## create a frame with data
mplot = old_workspace.var("rrv_mass_lvj").frame(RooFit.Title(""), RooFit.Bins(int(old_workspace.var("rrv_mass_lvj").getBins()/10)),RooFit.Range(700,3000));
old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).plotOn(mplot,RooFit.Name("data_invisible"),RooFit.MarkerSize(1.5),RooFit.DataError(RooAbsData.SumW2), RooFit.XErrorSize(0));
rrv_number_WJets = old_workspace.var("rate_WJets_xww_for_unbin");
rrv_number_VV = old_workspace.var("rate_VV_xww_for_unbin");
rrv_number_TTbar = old_workspace.var("rate_TTbar_xww_for_unbin");
rrv_number_STop = old_workspace.var("rate_STop_xww_for_unbin");
rrv_number_signal = old_workspace.var("rate_BulkWW_xww_for_unbin");
rrv_number_Total_background_MC = RooRealVar("rrv_number_Total_background_MC_xww","rrv_number_Total_background_MC_xww",
rrv_number_WJets.getVal()+
rrv_number_VV.getVal()+
rrv_number_TTbar.getVal()+
rrv_number_STop.getVal());
rrv_number_Total_background_MC.setError(TMath.Sqrt(
rrv_number_WJets.getError()* rrv_number_WJets.getError()+
rrv_number_VV.getError()* rrv_number_VV.getError()+
rrv_number_TTbar.getError()* rrv_number_TTbar.getError()+
rrv_number_STop.getError() *rrv_number_STop.getError()
));
model_Total_background_MC = RooAddPdf("model_Total_background_MC_xww","model_Total_background_MC_xww",RooArgList(old_workspace.pdf("WJets_xww_%s_%s"%(options.channel,options.category)), old_workspace.pdf("VV_xww_%s_%s"%(options.channel,options.category)),old_workspace.pdf("TTbar_xww_%s_%s"%(options.channel,options.category)),old_workspace.pdf("STop_xww_%s_%s"%(options.channel,options.category))),RooArgList(rrv_number_WJets,rrv_number_VV,rrv_number_TTbar,rrv_number_STop));
rrv_number_signal.setVal(rrv_number_signal.getVal()*6.25);
#### scale factor in order to scale MC to data in the final plot -> in order to avoid the normalization to data which is done by default in rooFit
scale_number_Total_background_MC = rrv_number_Total_background_MC.getVal()/old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).sumEntries();
scale_number_signal = rrv_number_signal.getVal()/old_workspace.data(datasetname+"_xww_"+options.channel+"_"+options.category).sumEntries();
model_Total_background_MC.plotOn(mplot,RooFit.Normalization(scale_number_Total_background_MC),RooFit.Name("total_MC"),RooFit.Components("WJets_xww_%s_%s,VV_xww_%s_%s,TTbar_xww_%s_%s,STop_xww_%s_%s"%(options.channel,options.category,options.channel,options.category,options.channel,options.category,options.channel,options.category)),RooFit.DrawOption("L"), RooFit.LineColor(kRed), RooFit.VLines(),RooFit.LineWidth(2));
model_signal_background_MC = RooAddPdf("model_signal_background_MC_xww","model_signal_background_MC_xww",RooArgList(model_pdf,model_Total_background_MC),RooArgList(rrv_number_signal,rrv_number_Total_background_MC));
model_signal_background_MC.plotOn(mplot,RooFit.Normalization(scale_number_Total_background_MC+scale_number_signal),RooFit.Name("total_SpB_MC"),RooFit.Components("BulkWW_xww_%s_%s,model_Total_background_MC_xww"%(options.channel,options.category)),RooFit.DrawOption("L"), RooFit.LineColor(kBlue), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(7));
model_pdf.plotOn(mplot,RooFit.Name("total_S_MC"),RooFit.Normalization(scale_number_signal),RooFit.DrawOption("L"), RooFit.LineColor(kGreen+2), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(kDashed));
os.system("mkdir -p ./plots_signal_width");
name = TString("check_%.3f_%.3f"%(mass[iMass],gammaVal));
name.ReplaceAll("0.","0_");
mplot.GetYaxis().SetRangeUser(1e-3,mplot.GetMaximum()*1.2);
draw_canvas(mplot,"plots_signal_width/",name,0,1);
new_workspace.writeToFile(new_file.GetName());
if ( (mass[iMass] == 1000 and gammaVal == 0.05) or (mass[iMass] == 1000 and gammaVal == 0.15) or (mass[iMass] == 1000 and gammaVal == 0.30) or
(mass[iMass] == 1500 and gammaVal == 0.05) or (mass[iMass] == 1500 and gammaVal == 0.15) or (mass[iMass] == 1500 and gammaVal == 0.30) or
(mass[iMass] == 2100 and gammaVal == 0.05) or (mass[iMass] == 2100 and gammaVal == 0.15) or (mass[iMass] == 2100 and gammaVal == 0.30) ):
signal_file_name = ("treeEDBR_BulkG_WW_inclusive_M%3d_W%d_xww.root"%(mass[iMass],int(mass[iMass]*gammaVal)));
print "#### making plot for ",signal_file_name;
file_Directory = "AnaSigTree_new/";
fileIn_name = TString(options.inPath+"/"+file_Directory+signal_file_name);
if gammaVal == 0.05 : sf = 5 ;
elif gammaVal == 0.15 : sf = 3 ;
elif gammaVal == 0.30 : sf = 1.5 ;
if gammaVal == 0.05 or mass[iMass] == 1000 : binWidth = 20;
elif gammaVal == 0.15 or mass[iMass] == 1500 : binWidth = 30;
elif gammaVal == 0.30 or mass[iMass] == 1500 : binWidth = 50;
elif gammaVal == 0.15 or mass[iMass] == 2000 : binWidth = 50;
elif gammaVal == 0.30 or mass[iMass] == 2000 : binWidth = 75;
else:
binWidth = 20;
rrv_mass_lvj = RooRealVar("rrv_mass_lvj_plot","M_{WW}",float(mass[iMass]),float(mass[iMass]-mass[iMass]*gammaVal*sf),float(mass[iMass]+mass[iMass]*gammaVal*sf),"GeV/c^{2}");
rrv_mass_lvj.setBins(int((rrv_mass_lvj.getMax()-rrv_mass_lvj.getMin())/binWidth));
rrv_mass_lvj.setMax(rrv_mass_lvj.getMin()+rrv_mass_lvj.getBins()*binWidth);
rrv_weight = RooRealVar("rrv_weight","rrv_weight",0. ,10000000.);
## open the signal file
fileIn = TFile(fileIn_name.Data());
treeIn = fileIn.Get("SelectedCandidatesPlain");
rdataset4fit_mlvj = RooDataSet("rdataset4fit_BulkG_WW_inclusive_M%3d_W%d_%s_mlvj"%(int(mass[iMass]),int(mass[iMass]*gammaVal),options.channel),"rdataset4fit_BulkG_WW_inclusive_M%3d_W%d_%s_mlvj"%(int(mass[iMass]),int(mass[iMass]*gammaVal),options.channel),RooArgSet(rrv_mass_lvj,rrv_weight),RooFit.WeightVar(rrv_weight));
luminosity = 19700;
tmp_scale_lumi = 0 ;
for iEvent in range(treeIn.GetEntries()):
if iEvent % 1000 == 0: print "iEvent: ",iEvent;
treeIn.GetEntry(iEvent);
if iEvent==0:
tmp_scale_to_lumi = getattr(treeIn,"LumiWeight")*luminosity;
tmp_jet_mass=getattr(treeIn,"mJJNoKinFit");
isGoodEvent = 0 ;
## event in the whole range
if options.channel == "em" :
if (getattr(treeIn,"categories")==1 or getattr(treeIn,"categories")==3) and getattr(treeIn,"mZZ")> rrv_mass_lvj.getMin() and getattr(treeIn,"mZZ")<rrv_mass_lvj.getMax() and tmp_jet_mass>=65 and tmp_jet_mass<=105 and options.category == "HP" :
isGoodEvent = 1 ;
if (getattr(treeIn,"categories")==0 or getattr(treeIn,"categories")==2) and getattr(treeIn,"mZZ")> rrv_mass_lvj.getMin() and getattr(treeIn,"mZZ")<rrv_mass_lvj.getMax() and tmp_jet_mass>=65 and tmp_jet_mass<=130 and options.category == "LP" :
isGoodEvent = 1 ;
if isGoodEvent == 1:
### weigh MC events
tmp_event_weight = getattr(treeIn,"weight")*luminosity;
rrv_mass_lvj.setVal(getattr(treeIn,"mZZ"));
rdataset4fit_mlvj.add(RooArgSet(rrv_mass_lvj),tmp_event_weight/tmp_scale_to_lumi);
### signal over convolution plot
mplot_sig = rrv_mass_lvj.frame(RooFit.Title(""),RooFit.Bins(rrv_mass_lvj.getBins()));
rdataset4fit_mlvj.plotOn(mplot_sig,RooFit.Name("data_invisible"),RooFit.MarkerSize(1.5),RooFit.DataError(RooAbsData.SumW2), RooFit.XErrorSize(0));
doubleCB_sig = ROOT.RooDoubleCrystalBall("DoubleCB_BulkG_WW_mlvj","DoubleCB_BulkG_WW_mlvj",rrv_mass_lvj,rrv_mean_CB,rrv_total_sigma_CB,rrv_alpha1_CB,rrv_n1_CB,rrv_alpha2_CB,rrv_n2_CB);
bw_sig = RooBreitWigner("bw_"+options.channel,"bw_"+options.channel,rrv_mass_lvj,rrv_total_mean_CB,rrv_width_BW);
original_bin = rrv_mass_lvj.getBins();
rrv_mass_lvj.setBins(1000,"cache");
model_pdf_sig = RooFFTConvPdf("sig_xww_%s_%s"%(options.channel,options.category),"sigxww_%s_%s"%(options.channel,options.category),rrv_mass_lvj,bw_sig,doubleCB_sig);
model_pdf_sig.setBufferFraction(1.0);
rrv_mass_lvj.setBins(int(original_bin));
model_pdf_sig.plotOn(mplot_sig,RooFit.Name("total_MC"),RooFit.Normalization((rrv_number_signal.getVal()/tmp_scale_to_lumi)/(6.25*rdataset4fit_mlvj.sumEntries())),RooFit.DrawOption("L"), RooFit.LineColor(kBlue), RooFit.VLines(),RooFit.LineWidth(2),RooFit.LineStyle(1));
mplot_pull = get_pull(rrv_mass_lvj,mplot_sig);
mplot_sig.GetYaxis().SetRangeUser(0.,mplot_sig.GetMaximum()*1.2);
draw_canvas_with_pull(mplot_sig,mplot_pull,"plots_signal_width/","signal_width_plot_%d_W%d"%(mass[iMass],mass[iMass]*gammaVal),"",0);
new_file.Close();
iMass = iMass +1 ;
os.system("rm %s/%s/temp_datacard_list.txt"%(options.inPath,options.datacardPath));
os.system("rm %s/%s/temp_workspace_list.txt"%(options.inPath,options.datacardPath));