You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Usage: bash run.sh [-c <llm_api>] [-i <device_id>] [-b <runtime_backend>] [-m <model_name>] [-t <conv_template>] [-p <tensor_parallel>] [-r <gpu_memory_utilization>]
-c <llm_api>: "Options {local, cloud} to specify the llm API mode, default is 'local'. If set to '-c cloud', please mannually set the environments {OPENAI_API_KEY, OPENAI_API_BASE, OPENAI_API_MODEL_NAME, OPENAI_API_CONTEXT_LENGTH} into .env fisrt."
-i <device_id>: "Specify argument GPU device_id."
-b <runtime_backend>: "Specify argument LLM inference runtime backend, options={default, hf, vllm}"
-m <model_name>: "Specify argument the model name to load public LLM model using FastChat serve API, options={Qwen-7B-Chat, deepseek-llm-7b-chat, ...}"
-t <conv_template>: "Specify argument the conversation template according to the public LLM model when using FastChat serve API, options={qwen-7b-chat, deepseek-chat, ...}"
-p <tensor_parallel>: "Use options {1, 2} to set tensor parallel parameters for vllm backend when using FastChat serve API, default tensor_parallel=1"
-r <gpu_memory_utilization>: "Specify argument gpu_memory_utilization (0,1] for vllm backend when using FastChat serve API, default gpu_memory_utilization=0.81"
-h: "Display help usage message"
Note: You can choose the most suitable Service Startup Command based on your own device conditions.
(1) Local Embedding/Rerank will run on device gpu_id_1 when setting "-i 0,1", otherwise using gpu_id_0 as default.
(2) When setting "-c cloud" that will use local Embedding/Rerank and OpenAI LLM API, which only requires about 4GB VRAM (recommend for GPU device VRAM <= 8GB).
(3) When you use OpenAI LLM API, you will be required to enter {OPENAI_API_KEY, OPENAI_API_BASE, OPENAI_API_MODEL_NAME, OPENAI_API_CONTEXT_LENGTH} immediately.
(4) "-b hf" is the most recommended way for running public LLM inference for its compatibility but with poor performance.
(5) When you choose a public Chat LLM for QAnything system, you should take care of a more suitable **PROMPT_TEMPLATE** (/path/to/QAnything/qanything_kernel/configs/model_config.py) setting considering different LLM models.
Supported Pulic LLM using FastChat API with Hugging Face Transformers/vllm runtime backend
... check or add conv_template for more LLMs in "/path/to/QAnything/third_party/FastChat/fastchat/conversation.py"
1. Run QAnything using FastChat API with Hugging Face transformers runtime backend (recommend for GPU device with VRAM <= 16GB).
1.1 Run Qwen-7B-QAnything
## Step 1. Download the public LLM model (e.g., Qwen-7B-QAnything) and save to "/path/to/QAnything/assets/custom_models"## (Optional) Download Qwen-7B-QAnything from ModelScope: https://www.modelscope.cn/models/netease-youdao/Qwen-7B-QAnything## (Optional) Download Qwen-7B-QAnything from Hugging Face: https://huggingface.co/netease-youdao/Qwen-7B-QAnythingcd /path/to/QAnything/assets/custom_models
git clone https://huggingface.co/netease-youdao/Qwen-7B-QAnything
## Step 2. Execute the service startup command. Here we use "-b hf" to specify the Hugging Face transformers backend.## Here we use "-b hf" to specify the transformers backend that will load model in 8 bits but do bf16 inference as default for saving VRAM.cd /path/to/QAnything
bash ./run.sh -c local -i 0 -b hf -m Qwen-7B-QAnything -t qwen-7b-qanything
1.2 Run a public LLM model (e.g., MiniChat-2-3B)
## Step 1. Download the public LLM model (e.g., MiniChat-2-3B) and save to "/path/to/QAnything/assets/custom_models"cd /path/to/QAnything/assets/custom_models
git lfs clone https://huggingface.co/GeneZC/MiniChat-2-3B
## Step 2. Execute the service startup command. Here we use "-b hf" to specify the Hugging Face transformers backend.## Here we use "-b hf" to specify the transformers backend that will load model in 8 bits but do bf16 inference as default for saving VRAM.cd /path/to/QAnything
bash ./run.sh -c local -i 0 -b hf -m MiniChat-2-3B -t minichat
2. Run QAnything using FastChat API with vllm runtime backend (recommend for GPU device with enough VRAM).
2.1 Run Qwen-7B-QAnything
## Step 1. Download the public LLM model (e.g., Qwen-7B-QAnything) and save to "/path/to/QAnything/assets/custom_models"## (Optional) Download Qwen-7B-QAnything from ModelScope: https://www.modelscope.cn/models/netease-youdao/Qwen-7B-QAnything## (Optional) Download Qwen-7B-QAnything from Hugging Face: https://huggingface.co/netease-youdao/Qwen-7B-QAnythingcd /path/to/QAnything/assets/custom_models
git clone https://huggingface.co/netease-youdao/Qwen-7B-QAnything
## Step 2. Execute the service startup command. Here we use "-b vllm" to specify the vllm backend.## Here we use "-b vllm" to specify the vllm backend that will do bf16 inference as default.## Note you should adjust the gpu_memory_utilization yourself according to the model size to avoid out of memory (e.g., gpu_memory_utilization=0.81 is set default for 7B. Here, gpu_memory_utilization is set to 0.85 by "-r 0.85").cd /path/to/QAnything
bash ./run.sh -c local -i 0 -b vllm -m Qwen-7B-QAnything -t qwen-7b-qanything -p 1 -r 0.85
2.2 Run a public LLM model (e.g., MiniChat-2-3B)
## Step 1. Download the public LLM model (e.g., MiniChat-2-3B) and save to "/path/to/QAnything/assets/custom_models"cd /path/to/QAnything/assets/custom_models
git clone https://huggingface.co/GeneZC/MiniChat-2-3B
## Step 2. Execute the service startup command. ## Here we use "-b vllm" to specify the vllm backend that will do bf16 inference as default.## Note you should adjust the gpu_memory_utilization yourself according to the model size to avoid out of memory (e.g., gpu_memory_utilization=0.81 is set default for 7B. Here, gpu_memory_utilization is set to 0.5 by "-r 0.5").cd /path/to/QAnything
bash ./run.sh -c local -i 0 -b vllm -m MiniChat-2-3B -t minichat -p 1 -r 0.5
## (Optional) Step 2. Execute the service startup command to specify the vllm backend by "-i 0,1 -p 2". It will do faster inference by setting a tensor parallel mode on 2 GPUs.## bash ./run.sh -c local -i 0,1 -b vllm -m MiniChat-2-3B -t minichat -p 2 -r 0.5
Tricks for saving GPU VRAM
## Trick 1. (Recommend for VRAM<=12 GB or GPU Compute Capability < 7.5) Using PaddleOCR serve in CPU mode **use_gpu=False** in '/path/to/QAnything/qanything_kernel/dependent_server/ocr_serve/ocr_server.py'# GPU Compute Capability: https://developer.nvidia.com/cuda-gpus# Note that **use_gpu=False** must be set when using RTX-1080Ti GPU, otherwise PaddleOCR will always return **empty ocr result** when using **use_gpu=True**.
ocr_engine = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=False, show_log=False)
## Trick 2. Try 1.8B/3B size LLM, such as Qwen-1.8B-Chat and MiniChat-2-3B.## Trick 3. Try to limit the max length of context window by decreasing the value of **token_window** and increasing that of **offcut_token**# /path/to/QAnything/qanything_kernel/connector/llm/llm_for_fastchat.py# /path/to/QAnything/qanything_kernel/connector/llm/llm_for_local.py## Trick 4. Try INT4-Weight-Only Quantization methods such as GPTQ/AWQ. You should take care of the sampling parameters considering possible loss of accuracy.