This repository has been archived by the owner on Jul 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 298
/
fraction_ring.lean
328 lines (265 loc) · 11.9 KB
/
fraction_ring.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Mario Carneiro, Johan Commelin, Amelia Livingston, Anne Baanen
-/
import algebra.algebra.tower
import ring_theory.localization.basic
/-!
# Fraction ring / fraction field Frac(R) as localization
## Main definitions
* `is_fraction_ring R K` expresses that `K` is a field of fractions of `R`, as an abbreviation of
`is_localization (non_zero_divisors R) K`
## Main results
* `is_fraction_ring.field`: a definition (not an instance) stating the localization of an integral
domain `R` at `R \ {0}` is a field
* `rat.is_fraction_ring` is an instance stating `ℚ` is the field of fractions of `ℤ`
## Implementation notes
See `src/ring_theory/localization/basic.lean` for a design overview.
## Tags
localization, ring localization, commutative ring localization, characteristic predicate,
commutative ring, field of fractions
-/
variables (R : Type*) [comm_ring R] {M : submonoid R} (S : Type*) [comm_ring S]
variables [algebra R S] {P : Type*} [comm_ring P]
variables {A : Type*} [comm_ring A] [is_domain A] (K : Type*)
/-- `is_fraction_ring R K` states `K` is the field of fractions of an integral domain `R`. -/
-- TODO: should this extend `algebra` instead of assuming it?
abbreviation is_fraction_ring [comm_ring K] [algebra R K] := is_localization (non_zero_divisors R) K
/-- The cast from `int` to `rat` as a `fraction_ring`. -/
instance rat.is_fraction_ring : is_fraction_ring ℤ ℚ :=
{ map_units :=
begin
rintro ⟨x, hx⟩,
rw mem_non_zero_divisors_iff_ne_zero at hx,
simpa only [eq_int_cast, is_unit_iff_ne_zero, int.cast_eq_zero,
ne.def, subtype.coe_mk] using hx,
end,
surj :=
begin
rintro ⟨n, d, hd, h⟩,
refine ⟨⟨n, ⟨d, _⟩⟩, rat.mul_denom_eq_num⟩,
rwa [mem_non_zero_divisors_iff_ne_zero, int.coe_nat_ne_zero_iff_pos]
end,
eq_iff_exists :=
begin
intros x y,
rw [eq_int_cast, eq_int_cast, int.cast_inj],
refine ⟨by { rintro rfl, use 1 }, _⟩,
rintro ⟨⟨c, hc⟩, h⟩,
apply mul_right_cancel₀ _ h,
rwa mem_non_zero_divisors_iff_ne_zero at hc,
end }
namespace is_fraction_ring
open is_localization
variables {R K}
section comm_ring
variables [comm_ring K] [algebra R K] [is_fraction_ring R K] [algebra A K] [is_fraction_ring A K]
lemma to_map_eq_zero_iff {x : R} :
algebra_map R K x = 0 ↔ x = 0 :=
to_map_eq_zero_iff _ (le_of_eq rfl)
variables (R K)
protected theorem injective : function.injective (algebra_map R K) :=
is_localization.injective _ (le_of_eq rfl)
variables {R K}
@[norm_cast, simp] lemma coe_inj {a b : R} : (↑a : K) = ↑b ↔ a = b :=
(is_fraction_ring.injective R K).eq_iff
@[priority 100] instance [no_zero_divisors K] : no_zero_smul_divisors R K :=
no_zero_smul_divisors.of_algebra_map_injective $ is_fraction_ring.injective R K
variables {R K}
protected lemma to_map_ne_zero_of_mem_non_zero_divisors [nontrivial R]
{x : R} (hx : x ∈ non_zero_divisors R) : algebra_map R K x ≠ 0 :=
is_localization.to_map_ne_zero_of_mem_non_zero_divisors _ le_rfl hx
variables (A)
/-- A `comm_ring` `K` which is the localization of an integral domain `R` at `R - {0}` is an
integral domain. -/
protected theorem is_domain : is_domain K :=
is_domain_of_le_non_zero_divisors _ (le_refl (non_zero_divisors A))
local attribute [instance] classical.dec_eq
/-- The inverse of an element in the field of fractions of an integral domain. -/
@[irreducible]
protected noncomputable def inv (z : K) : K :=
if h : z = 0 then 0 else
mk' K ↑(sec (non_zero_divisors A) z).2
⟨(sec _ z).1,
mem_non_zero_divisors_iff_ne_zero.2 $ λ h0, h $
eq_zero_of_fst_eq_zero (sec_spec (non_zero_divisors A) z) h0⟩
local attribute [semireducible] is_fraction_ring.inv
protected lemma mul_inv_cancel (x : K) (hx : x ≠ 0) :
x * is_fraction_ring.inv A x = 1 :=
show x * dite _ _ _ = 1, begin
rw [dif_neg hx, ←is_unit.mul_left_inj
(map_units K ⟨(sec _ x).1, mem_non_zero_divisors_iff_ne_zero.2 $
λ h0, hx $ eq_zero_of_fst_eq_zero (sec_spec (non_zero_divisors A) x) h0⟩),
one_mul, mul_assoc],
rw [mk'_spec, ←eq_mk'_iff_mul_eq],
exact (mk'_sec _ x).symm
end
/-- A `comm_ring` `K` which is the localization of an integral domain `R` at `R - {0}` is a field.
See note [reducible non-instances]. -/
@[reducible]
noncomputable def to_field : field K :=
{ inv := is_fraction_ring.inv A,
mul_inv_cancel := is_fraction_ring.mul_inv_cancel A,
inv_zero := dif_pos rfl,
.. is_fraction_ring.is_domain A,
.. show comm_ring K, by apply_instance }
end comm_ring
variables {B : Type*} [comm_ring B] [is_domain B] [field K] {L : Type*} [field L]
[algebra A K] [is_fraction_ring A K] {g : A →+* L}
lemma mk'_mk_eq_div {r s} (hs : s ∈ non_zero_divisors A) :
mk' K r ⟨s, hs⟩ = algebra_map A K r / algebra_map A K s :=
mk'_eq_iff_eq_mul.2 $ (div_mul_cancel (algebra_map A K r)
(is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors hs)).symm
@[simp] lemma mk'_eq_div {r} (s : non_zero_divisors A) :
mk' K r s = algebra_map A K r / algebra_map A K s :=
mk'_mk_eq_div s.2
lemma div_surjective (z : K) : ∃ (x y : A) (hy : y ∈ non_zero_divisors A),
algebra_map _ _ x / algebra_map _ _ y = z :=
let ⟨x, ⟨y, hy⟩, h⟩ := mk'_surjective (non_zero_divisors A) z
in ⟨x, y, hy, by rwa mk'_eq_div at h⟩
lemma is_unit_map_of_injective (hg : function.injective g)
(y : non_zero_divisors A) : is_unit (g y) :=
is_unit.mk0 (g y) $ show g.to_monoid_with_zero_hom y ≠ 0,
from map_ne_zero_of_mem_non_zero_divisors g hg y.2
@[simp] lemma mk'_eq_zero_iff_eq_zero [algebra R K] [is_fraction_ring R K] {x : R}
{y : non_zero_divisors R} : mk' K x y = 0 ↔ x = 0 :=
begin
refine ⟨λ hxy, _, λ h, by rw [h, mk'_zero]⟩,
{ simp_rw [mk'_eq_zero_iff, mul_right_coe_non_zero_divisors_eq_zero_iff] at hxy,
exact (exists_const _).mp hxy },
end
lemma mk'_eq_one_iff_eq {x : A} {y : non_zero_divisors A} : mk' K x y = 1 ↔ x = y :=
begin
refine ⟨_, λ hxy, by rw [hxy, mk'_self']⟩,
{ intro hxy, have hy : (algebra_map A K) ↑y ≠ (0 : K) :=
is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors y.property,
rw [is_fraction_ring.mk'_eq_div, div_eq_one_iff_eq hy] at hxy,
exact is_fraction_ring.injective A K hxy }
end
open function
/-- Given an integral domain `A` with field of fractions `K`,
and an injective ring hom `g : A →+* L` where `L` is a field, we get a
field hom sending `z : K` to `g x * (g y)⁻¹`, where `(x, y) : A × (non_zero_divisors A)` are
such that `z = f x * (f y)⁻¹`. -/
noncomputable def lift (hg : injective g) : K →+* L :=
lift $ λ (y : non_zero_divisors A), is_unit_map_of_injective hg y
/-- Given an integral domain `A` with field of fractions `K`,
and an injective ring hom `g : A →+* L` where `L` is a field,
the field hom induced from `K` to `L` maps `x` to `g x` for all
`x : A`. -/
@[simp] lemma lift_algebra_map (hg : injective g) (x) :
lift hg (algebra_map A K x) = g x :=
lift_eq _ _
/-- Given an integral domain `A` with field of fractions `K`,
and an injective ring hom `g : A →+* L` where `L` is a field,
field hom induced from `K` to `L` maps `f x / f y` to `g x / g y` for all
`x : A, y ∈ non_zero_divisors A`. -/
lemma lift_mk' (hg : injective g) (x) (y : non_zero_divisors A) :
lift hg (mk' K x y) = g x / g y :=
by simp only [mk'_eq_div, map_div₀, lift_algebra_map]
/-- Given integral domains `A, B` with fields of fractions `K`, `L`
and an injective ring hom `j : A →+* B`, we get a field hom
sending `z : K` to `g (j x) * (g (j y))⁻¹`, where `(x, y) : A × (non_zero_divisors A)` are
such that `z = f x * (f y)⁻¹`. -/
noncomputable def map {A B K L : Type*} [comm_ring A] [comm_ring B] [is_domain B]
[comm_ring K] [algebra A K] [is_fraction_ring A K] [comm_ring L] [algebra B L]
[is_fraction_ring B L] {j : A →+* B} (hj : injective j) :
K →+* L :=
map L j (show non_zero_divisors A ≤ (non_zero_divisors B).comap j,
from non_zero_divisors_le_comap_non_zero_divisors_of_injective j hj)
/-- Given integral domains `A, B` and localization maps to their fields of fractions
`f : A →+* K, g : B →+* L`, an isomorphism `j : A ≃+* B` induces an isomorphism of
fields of fractions `K ≃+* L`. -/
noncomputable def field_equiv_of_ring_equiv [algebra B L] [is_fraction_ring B L] (h : A ≃+* B) :
K ≃+* L :=
ring_equiv_of_ring_equiv K L h
begin
ext b,
show b ∈ h.to_equiv '' _ ↔ _,
erw [h.to_equiv.image_eq_preimage, set.preimage, set.mem_set_of_eq,
mem_non_zero_divisors_iff_ne_zero, mem_non_zero_divisors_iff_ne_zero],
exact h.symm.map_ne_zero_iff
end
variables (S)
lemma is_fraction_ring_iff_of_base_ring_equiv (h : R ≃+* P) :
is_fraction_ring R S ↔
@@is_fraction_ring P _ S _ ((algebra_map R S).comp h.symm.to_ring_hom).to_algebra :=
begin
delta is_fraction_ring,
convert is_localization_iff_of_base_ring_equiv _ _ h,
ext x,
erw submonoid.map_equiv_eq_comap_symm,
simp only [mul_equiv.coe_to_monoid_hom,
ring_equiv.to_mul_equiv_eq_coe, submonoid.mem_comap],
split,
{ rintros hx z (hz : z * h.symm x = 0),
rw ← h.map_eq_zero_iff,
apply hx,
simpa only [h.map_zero, h.apply_symm_apply, h.map_mul] using congr_arg h hz },
{ rintros (hx : h.symm x ∈ _) z hz,
rw ← h.symm.map_eq_zero_iff,
apply hx,
rw [← h.symm.map_mul, hz, h.symm.map_zero] }
end
protected
lemma nontrivial (R S : Type*) [comm_ring R] [nontrivial R] [comm_ring S] [algebra R S]
[is_fraction_ring R S] : nontrivial S :=
begin
apply nontrivial_of_ne,
intro h,
apply @zero_ne_one R,
exact is_localization.injective S (le_of_eq rfl)
(((algebra_map R S).map_zero.trans h).trans (algebra_map R S).map_one.symm),
end
end is_fraction_ring
variables (R A)
/-- The fraction ring of a commutative ring `R` as a quotient type.
We instantiate this definition as generally as possible, and assume that the
commutative ring `R` is an integral domain only when this is needed for proving.
-/
@[reducible] def fraction_ring := localization (non_zero_divisors R)
namespace fraction_ring
instance unique [subsingleton R] : unique (fraction_ring R) :=
localization.unique
instance [nontrivial R] : nontrivial (fraction_ring R) :=
⟨⟨(algebra_map R _) 0, (algebra_map _ _) 1,
λ H, zero_ne_one (is_localization.injective _ le_rfl H)⟩⟩
variables {A}
noncomputable instance : field (fraction_ring A) :=
{ add := (+),
mul := (*),
neg := has_neg.neg,
sub := has_sub.sub,
one := 1,
zero := 0,
nsmul := add_monoid.nsmul,
zsmul := sub_neg_monoid.zsmul,
npow := localization.npow _,
.. localization.comm_ring,
.. is_fraction_ring.to_field A }
@[simp] lemma mk_eq_div {r s} : (localization.mk r s : fraction_ring A) =
(algebra_map _ _ r / algebra_map A _ s : fraction_ring A) :=
by rw [localization.mk_eq_mk', is_fraction_ring.mk'_eq_div]
noncomputable instance [is_domain R] [field K] [algebra R K] [no_zero_smul_divisors R K] :
algebra (fraction_ring R) K :=
ring_hom.to_algebra (is_fraction_ring.lift (no_zero_smul_divisors.algebra_map_injective R _))
instance [is_domain R] [field K] [algebra R K] [no_zero_smul_divisors R K] :
is_scalar_tower R (fraction_ring R) K :=
is_scalar_tower.of_algebra_map_eq (λ x, (is_fraction_ring.lift_algebra_map _ x).symm)
variables (A)
/-- Given an integral domain `A` and a localization map to a field of fractions
`f : A →+* K`, we get an `A`-isomorphism between the field of fractions of `A` as a quotient
type and `K`. -/
noncomputable def alg_equiv (K : Type*) [field K] [algebra A K] [is_fraction_ring A K] :
fraction_ring A ≃ₐ[A] K :=
localization.alg_equiv (non_zero_divisors A) K
instance [algebra R A] [no_zero_smul_divisors R A] : no_zero_smul_divisors R (fraction_ring A) :=
no_zero_smul_divisors.of_algebra_map_injective
begin
rw [is_scalar_tower.algebra_map_eq R A],
exact function.injective.comp
(no_zero_smul_divisors.algebra_map_injective _ _)
(no_zero_smul_divisors.algebra_map_injective _ _)
end
end fraction_ring