This repository has been archived by the owner on Oct 14, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 217
/
Copy pathbasic.lean
238 lines (178 loc) · 8.79 KB
/
basic.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/-
Copyright (c) 2017 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Leonardo de Moura, Mario Carneiro
-/
prelude
import init.data.nat init.data.bool init.ite_simp
universes u v w
/- In the VM, d_array is implemented a persistent array. -/
structure d_array (n : nat) (α : fin n → Type u) :=
(data : Π i : fin n, α i)
namespace d_array
variables {n : nat} {α : fin n → Type u} {β : Type v}
def nil {α} : d_array 0 α :=
{data := λ ⟨x, h⟩, absurd h (nat.not_lt_zero x)}
/- has builtin VM implementation -/
def read (a : d_array n α) (i : fin n) : α i :=
a.data i
/- has builtin VM implementation -/
def write (a : d_array n α) (i : fin n) (v : α i) : d_array n α :=
{data := λ j, if h : i = j then eq.rec_on h v else a.read j}
def iterate_aux (a : d_array n α) (f : Π i : fin n, α i → β → β) : Π (i : nat), i ≤ n → β → β
| 0 h b := b
| (j+1) h b :=
let i : fin n := ⟨j, h⟩ in
f i (a.read i) (iterate_aux j (le_of_lt h) b)
/- has builtin VM implementation -/
def iterate (a : d_array n α) (b : β) (f : Π i : fin n, α i → β → β) : β :=
iterate_aux a f n (le_refl _) b
/- has builtin VM implementation -/
def foreach (a : d_array n α) (f : Π i : fin n, α i → α i) : d_array n α :=
iterate a a $ λ i v a', a'.write i (f i v)
def map (f : Π i : fin n, α i → α i) (a : d_array n α) : d_array n α :=
foreach a f
def map₂ (f : Π i : fin n, α i → α i → α i) (a b : d_array n α) : d_array n α :=
foreach b (λ i, f i (a.read i))
def foldl (a : d_array n α) (b : β) (f : Π i : fin n, α i → β → β) : β :=
iterate a b f
def rev_iterate_aux (a : d_array n α) (f : Π i : fin n, α i → β → β) : Π (i : nat), i ≤ n → β → β
| 0 h b := b
| (j+1) h b :=
let i : fin n := ⟨j, h⟩ in
rev_iterate_aux j (le_of_lt h) (f i (a.read i) b)
def rev_iterate (a : d_array n α) (b : β) (f : Π i : fin n, α i → β → β) : β :=
rev_iterate_aux a f n (le_refl _) b
@[simp] lemma read_write (a : d_array n α) (i : fin n) (v : α i) : read (write a i v) i = v :=
by simp [read, write]
@[simp] lemma read_write_of_ne (a : d_array n α) {i j : fin n} (v : α i) : i ≠ j → read (write a i v) j = read a j :=
by intro h; simp [read, write, h]
protected lemma ext {a b : d_array n α} (h : ∀ i, read a i = read b i) : a = b :=
by cases a; cases b; congr; exact funext h
protected lemma ext' {a b : d_array n α} (h : ∀ (i : nat) (h : i < n), read a ⟨i, h⟩ = read b ⟨i, h⟩) : a = b :=
begin cases a, cases b, congr, funext i, cases i, apply h end
protected def beq_aux [∀ i, decidable_eq (α i)] (a b : d_array n α) : Π (i : nat), i ≤ n → bool
| 0 h := tt
| (i+1) h := if a.read ⟨i, h⟩ = b.read ⟨i, h⟩ then beq_aux i (le_of_lt h) else ff
protected def beq [∀ i, decidable_eq (α i)] (a b : d_array n α) : bool :=
d_array.beq_aux a b n (le_refl _)
lemma of_beq_aux_eq_tt [∀ i, decidable_eq (α i)] {a b : d_array n α} : ∀ (i : nat) (h : i ≤ n), d_array.beq_aux a b i h = tt →
∀ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h⟩ = b.read ⟨j, lt_of_lt_of_le h' h⟩
| 0 h₁ h₂ j h₃ := absurd h₃ (nat.not_lt_zero _)
| (i+1) h₁ h₂ j h₃ :=
begin
have h₂' : read a ⟨i, h₁⟩ = read b ⟨i, h₁⟩ ∧ d_array.beq_aux a b i _ = tt, {simp [d_array.beq_aux] at h₂, assumption},
have h₁' : i ≤ n, from le_of_lt h₁,
have ih : ∀ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h₁'⟩ = b.read ⟨j, lt_of_lt_of_le h' h₁'⟩, from of_beq_aux_eq_tt i h₁' h₂'.2,
by_cases hji : j = i,
{ subst hji, exact h₂'.1 },
{ have j_lt_i : j < i, from lt_of_le_of_ne (nat.le_of_lt_succ h₃) hji,
exact ih j j_lt_i }
end
lemma of_beq_eq_tt [∀ i, decidable_eq (α i)] {a b : d_array n α} : d_array.beq a b = tt → a = b :=
begin
unfold d_array.beq,
intro h,
have : ∀ (j : nat) (h : j < n), a.read ⟨j, h⟩ = b.read ⟨j, h⟩, from
of_beq_aux_eq_tt n (le_refl _) h,
apply d_array.ext' this
end
lemma of_beq_aux_eq_ff [∀ i, decidable_eq (α i)] {a b : d_array n α} : ∀ (i : nat) (h : i ≤ n), d_array.beq_aux a b i h = ff →
∃ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h⟩ ≠ b.read ⟨j, lt_of_lt_of_le h' h⟩
| 0 h₁ h₂ := begin simp [d_array.beq_aux] at h₂, contradiction end
| (i+1) h₁ h₂ :=
begin
have h₂' : read a ⟨i, h₁⟩ ≠ read b ⟨i, h₁⟩ ∨ d_array.beq_aux a b i _ = ff, {simp [d_array.beq_aux] at h₂, assumption},
cases h₂' with h h,
{ existsi i, existsi (nat.lt_succ_self _), exact h },
{ have h₁' : i ≤ n, from le_of_lt h₁,
have ih : ∃ (j : nat) (h' : j < i), a.read ⟨j, lt_of_lt_of_le h' h₁'⟩ ≠ b.read ⟨j, lt_of_lt_of_le h' h₁'⟩, from of_beq_aux_eq_ff i h₁' h,
cases ih with j ih,
cases ih with h' ih,
existsi j, existsi (nat.lt_succ_of_lt h'),
exact ih }
end
lemma of_beq_eq_ff [∀ i, decidable_eq (α i)] {a b : d_array n α} : d_array.beq a b = ff → a ≠ b :=
begin
unfold d_array.beq,
intros h hne,
have : ∃ (j : nat) (h' : j < n), a.read ⟨j, h'⟩ ≠ b.read ⟨j, h'⟩, from of_beq_aux_eq_ff n (le_refl _) h,
cases this with j this,
cases this with h' this,
subst hne,
contradiction
end
instance [∀ i, decidable_eq (α i)] : decidable_eq (d_array n α) :=
λ a b, if h : d_array.beq a b = tt then is_true (of_beq_eq_tt h) else is_false (of_beq_eq_ff (eq_ff_of_not_eq_tt h))
end d_array
def array (n : nat) (α : Type u) : Type u :=
d_array n (λ _, α)
/- has builtin VM implementation -/
def mk_array {α} (n) (v : α) : array n α :=
{data := λ _, v}
namespace array
variables {n : nat} {α : Type u} {β : Type v}
def nil {α} : array 0 α :=
d_array.nil
def read (a : array n α) (i : fin n) : α :=
d_array.read a i
def write (a : array n α) (i : fin n) (v : α) : array n α :=
d_array.write a i v
def iterate (a : array n α) (b : β) (f : fin n → α → β → β) : β :=
d_array.iterate a b f
def foreach (a : array n α) (f : fin n → α → α) : array n α :=
iterate a a (λ i v a', a'.write i (f i v))
def map (f : α → α) (a : array n α) : array n α :=
foreach a (λ _, f)
def map₂ (f : α → α → α) (a b : array n α) : array n α :=
foreach b (λ i, f (a.read i))
def foldl (a : array n α) (b : β) (f : α → β → β) : β :=
iterate a b (λ _, f)
def rev_list (a : array n α) : list α :=
a.foldl [] (::)
def rev_iterate (a : array n α) (b : β) (f : fin n → α → β → β) : β :=
d_array.rev_iterate a b f
def rev_foldl (a : array n α) (b : β) (f : α → β → β) : β :=
rev_iterate a b (λ _, f)
def to_list (a : array n α) : list α :=
a.rev_foldl [] (::)
lemma push_back_idx {j n} (h₁ : j < n + 1) (h₂ : j ≠ n) : j < n :=
nat.lt_of_le_and_ne (nat.le_of_lt_succ h₁) h₂
/- has builtin VM implementation -/
def push_back (a : array n α) (v : α) : array (n+1) α :=
{data := λ ⟨j, h₁⟩, if h₂ : j = n then v else a.read ⟨j, push_back_idx h₁ h₂⟩}
lemma pop_back_idx {j n} (h : j < n) : j < n + 1 :=
nat.lt.step h
/- has builtin VM implementation -/
def pop_back (a : array (n+1) α) : array n α :=
{data := λ ⟨j, h⟩, a.read ⟨j, pop_back_idx h⟩}
protected def mem (v : α) (a : array n α) : Prop :=
∃ i : fin n, read a i = v
instance : has_mem α (array n α) := ⟨array.mem⟩
theorem read_mem (a : array n α) (i) : read a i ∈ a :=
exists.intro i rfl
instance [has_repr α] : has_repr (array n α) :=
⟨repr ∘ to_list⟩
meta instance [has_to_format α] : has_to_format (array n α) :=
⟨to_fmt ∘ to_list⟩
meta instance [has_to_tactic_format α] : has_to_tactic_format (array n α) :=
⟨tactic.pp ∘ to_list⟩
@[simp] lemma read_write (a : array n α) (i : fin n) (v : α) : read (write a i v) i = v :=
d_array.read_write a i v
@[simp] lemma read_write_of_ne (a : array n α) {i j : fin n} (v : α) : i ≠ j → read (write a i v) j = read a j :=
d_array.read_write_of_ne a v
def read' [inhabited β] (a : array n β) (i : nat) : β :=
if h : i < n then a.read ⟨i,h⟩ else default β
def write' (a : array n α) (i : nat) (v : α) : array n α :=
if h : i < n then a.write ⟨i, h⟩ v else a
lemma read_eq_read' [inhabited α] (a : array n α) {i : nat} (h : i < n) : read a ⟨i, h⟩ = read' a i :=
by simp [read', h]
lemma write_eq_write' (a : array n α) {i : nat} (h : i < n) (v : α) : write a ⟨i, h⟩ v = write' a i v :=
by simp [write', h]
protected lemma ext {a b : array n α} (h : ∀ i, read a i = read b i) : a = b :=
d_array.ext h
protected lemma ext' {a b : array n α} (h : ∀ (i : nat) (h : i < n), read a ⟨i, h⟩ = read b ⟨i, h⟩) : a = b :=
d_array.ext' h
instance [decidable_eq α] : decidable_eq (array n α) :=
begin unfold array, apply_instance end
end array