forked from 1adrianb/face-alignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils.py
36 lines (25 loc) · 1.2 KB
/
test_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import unittest
from face_alignment.utils import *
import numpy as np
import torch
class Tester(unittest.TestCase):
def test_flip_is_label(self):
# Generate the points
heatmaps = torch.from_numpy(np.random.randint(1, high=250, size=(68, 64, 64)).astype('float32'))
flipped_heatmaps = flip(flip(heatmaps.clone(), is_label=True), is_label=True)
assert np.allclose(heatmaps.numpy(), flipped_heatmaps.numpy())
def test_flip_is_image(self):
fake_image = torch.torch.rand(3, 256, 256)
fliped_fake_image = flip(flip(fake_image.clone()))
assert np.allclose(fake_image.numpy(), fliped_fake_image.numpy())
def test_getpreds(self):
pts = torch.from_numpy(np.random.randint(1, high=63, size=(68, 2)).astype('float32'))
heatmaps = np.zeros((68, 256, 256))
for i in range(68):
if pts[i, 0] > 0:
heatmaps[i] = draw_gaussian(heatmaps[i], pts[i], 2)
heatmaps = torch.from_numpy(np.expand_dims(heatmaps, axis=0))
preds, _ = get_preds_fromhm(heatmaps)
assert np.allclose(pts.numpy(), preds.numpy(), atol=5)
if __name__ == '__main__':
unittest.main()