forked from koulanurag/mmn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_tomita.py
280 lines (239 loc) · 12.5 KB
/
main_tomita.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-
"""
Script for training Moore Machine Network(MMNet) on Gold Rush
"""
import os
import sys
import qbn
import time
import copy
import torch
import pickle
import gru_nn
import bgru_nn
import logging
import traceback
import gym, gym_x
import fsm_process
import tools as tl
import torch.nn as nn
from torch import optim
from functions import TernaryTanh
from torch.autograd import Variable
from moore_machine import MooreMachine
class HxQBNet(nn.Module):
"""
Quantized Bottleneck Network(QBN) for hidden states of GRU
"""
def __init__(self, input_size, x_features):
super(HxQBNet, self).__init__()
self.bhx_size = x_features
f1 = int(8 * x_features)
self.encoder = nn.Sequential(nn.Linear(input_size, f1),
nn.Tanh(),
nn.Linear(f1, x_features),
TernaryTanh())
self.decoder = nn.Sequential(nn.Linear(x_features, f1),
nn.Tanh(),
nn.Linear(f1, input_size),
nn.Tanh())
def forward(self, x):
x = self.encode(x)
return self.decode(x), x
def encode(self, x):
return self.encoder(x)
def decode(self, x):
return self.decoder(x)
class GRUNet(nn.Module):
"""
Gated Recurrent Unit Network(GRUNet) definition
"""
def __init__(self, input_size, gru_cells, total_actions):
super(GRUNet, self).__init__()
self.gru_units = gru_cells
self.input_c_features = 4 * input_size
self.input_ff = nn.Sequential(nn.Linear(input_size, self.input_c_features), nn.ReLU())
self.gru = nn.GRUCell(self.input_c_features, gru_cells)
self.actor_linear = nn.Linear(gru_cells, total_actions)
def forward(self, input, input_fn=None, hx_fn=None, inspect=False):
input, hx = input
c_input = self.input_ff(input)
input, input_x = input_fn(c_input) if input_fn is not None else (c_input, c_input)
ghx = self.gru(input, hx)
hx, bhx = hx_fn(ghx) if hx_fn is not None else (ghx, ghx)
if inspect:
return None, self.actor_linear(hx), hx, (ghx, bhx, c_input, input_x)
else:
return None, self.actor_linear(hx), hx
def init_hidden(self, batch_size=1):
return torch.zeros(batch_size, self.gru_units)
def get_action_linear(self, state):
return self.actor_linear(state)
def transact(self, o_x, hx):
hx = self.gru(o_x, hx)
return hx
class MMNet(nn.Module):
"""
Moore Machine Network(MMNet) definition
"""
def __init__(self, net, hx_qbn=None):
super(MMNet, self).__init__()
self.bhx_units = hx_qbn.bhx_size if hx_qbn is not None else None
self.gru_units = net.gru_units
self.gru_net = net
self.bhx_net = hx_qbn
self.obx_net = None
self.actor_linear = self.gru_net.get_action_linear
def init_hidden(self, batch_size=1):
return self.gru_net.init_hidden(batch_size)
def forward(self, x, inspect=False):
x, hx = x
critic, actor, hx, (ghx, bhx, input_c, input_x) = self.gru_net((x, hx), input_fn=self.obx_net,
hx_fn=self.bhx_net, inspect=True)
if inspect:
return critic, actor, hx, (ghx, bhx), (input_c, input_x)
else:
return critic, actor, hx
def get_action_linear(self, state, decode=False):
if decode:
hx = self.bhx_net.decode(state)
else:
hx = state
return self.actor_linear(hx)
def transact(self, o_x, hx_x):
hx_x = self.gru_net.transact(self.obx_net.decode(o_x), self.bhx_net.decode(hx_x))
_, hx_x = self.bhx_net(hx_x)
return hx_x
def state_encode(self, state):
return self.bhx_net.encode(state)
def obs_encode(self, obs, hx=None):
if hx is None:
hx = Variable(torch.zeros(1, self.gru_units))
if next(self.parameters()).is_cuda:
hx = hx.cuda()
_, _, _, (_, _, _, input_x) = self.gru_net((obs, hx), input_fn=self.obx_net, hx_fn=self.bhx_net, inspect=True)
return input_x
if __name__ == '__main__':
args = tl.get_args()
env = gym.make(args.env)
env.seed(args.env_seed)
obs = env.reset()
# create directories to store results
result_dir = tl.ensure_directory_exits(os.path.join(args.result_dir, 'Tomita'))
env_dir = tl.ensure_directory_exits(os.path.join(result_dir, args.env))
gru_dir = tl.ensure_directory_exits(os.path.join(env_dir, 'gru_{}'.format(args.gru_size)))
gru_net_path = os.path.join(gru_dir, 'model.p')
gru_plot_dir = tl.ensure_directory_exits(os.path.join(gru_dir, 'Plots'))
bhx_dir = tl.ensure_directory_exits(
os.path.join(env_dir, 'gru_{}_bhx_{}{}'.format(args.gru_size, args.bhx_size, args.bhx_suffix)))
bhx_net_path = os.path.join(bhx_dir, 'model.p')
bhx_plot_dir = tl.ensure_directory_exits(os.path.join(bhx_dir, 'Plots'))
ox_dir = tl.ensure_directory_exits(
os.path.join(env_dir, 'gru_{}_ox_{}{}'.format(args.gru_size, args.ox_size, args.bhx_suffix)))
ox_net_path = os.path.join(ox_dir, 'model.p')
ox_plot_dir = tl.ensure_directory_exits(os.path.join(ox_dir, 'Plots'))
data_dir = tl.ensure_directory_exits(os.path.join(env_dir, 'data'))
bottleneck_data_path = os.path.join(data_dir, 'bottleneck_data.p')
trajectories_data_path = os.path.join(data_dir, 'trajectories_data.p')
gru_prob_data_path = os.path.join(data_dir, 'gru_prob_data.p')
try:
fsm_object = fsm_process.ProcessFSM(env)
# ***********************************************************************************
# Generating training data *
# ***********************************************************************************
no_batches = 100
if args.generate_train_data:
train_data = fsm_object.generate_train_data(no_batches, args.batch_size, trajectories_data_path, args.generate_train_data, gru_dir)
# ***********************************************************************************
# GRU Network *
# ***********************************************************************************
if args.gru_train or args.gru_test:
tl.set_log(gru_dir, 'train' if args.gru_train else 'test')
gru_net = GRUNet(len(obs), args.gru_size, int(env.action_space.n))
if args.cuda:
gru_net = gru_net.cuda()
if args.gru_train:
train_data = fsm_object.generate_train_data(no_batches, args.batch_size, trajectories_data_path, args.generate_train_data, gru_dir)
gru_net = fsm_object.train_gru(gru_net, gru_net_path, gru_plot_dir, train_data, args.batch_size, args.train_epochs, args.cuda, args.bn_episodes, bottleneck_data_path, args.generate_max_steps, gru_prob_data_path, gru_dir)
if args.gru_test:
test_performance = fsm_object.test_gru(gru_net, gru_net_path, args.cuda)
# ***********************************************************************************
# Generating BottleNeck training data *
# ***********************************************************************************
if args.generate_bn_data:
tl.set_log(data_dir, 'generate_bn_data')
logging.info('Generating Data-Set for Later Bottle Neck Training')
gru_net = GRUNet(len(obs), args.gru_size, int(env.action_space.n))
gru_net.load_state_dict(torch.load(gru_net_path))
gru_net.noise = False
if args.cuda:
gru_net = gru_net.cuda()
gru_net.eval()
tl.generate_bottleneck_data(gru_net, env, args.bn_episodes, bottleneck_data_path, cuda=args.cuda, eps=(0, 0.3), max_steps=args.generate_max_steps)
tl.generate_trajectories(env, 3, 5, gru_prob_data_path, gru_net, cuda=args.cuda, render=True)
# ***********************************************************************************
# HX-QBN *
# ***********************************************************************************
if args.bhx_train or args.bhx_test:
tl.set_log(bhx_dir, 'train' if args.bhx_train else 'test')
gru_net = GRUNet(len(obs), args.gru_size, int(env.action_space.n))
gru_net.eval()
bhx_net = HxQBNet(args.gru_size, args.bhx_size)
if args.cuda:
gru_net = gru_net.cuda()
bhx_net = bhx_net.cuda()
if not os.path.exists(gru_net_path):
logging.info('Pre-Trained GRU model not found!')
sys.exit(0)
else:
gru_net.load_state_dict(torch.load(gru_net_path, map_location='cpu'))
gru_net.noise = False
env.spec.reward_threshold = gru_nn.test(gru_net, env, 5, log=True, cuda=args.cuda, render=False)
logging.info('Reward Threshold:' + str(env.spec.reward_threshold))
target_net = lambda bottle_net: MMNet(gru_net, hx_qbn=bottle_net)
logging.info('Loading Data-Set')
hx_train_data, hx_test_data, _, _ = tl.generate_bottleneck_data(gru_net, env, args.bn_episodes, bottleneck_data_path, cuda=args.cuda, max_steps=args.generate_max_steps)
if args.bhx_train:
fsm_object.bhx_train(bhx_net, hx_train_data, hx_test_data, bhx_net_path, bhx_plot_dir, args.batch_size, args.train_epochs, args.cuda, target_net, bhx_dir)
if args.bhx_test:
fsm_object.bhx_test(bhx_net, bhx_net_path, hx_test_data, args.cuda)
# ***********************************************************************************
# MMN *
# ***********************************************************************************
if args.bgru_train or args.bgru_test or args.generate_fsm or args.evaluate_fsm:
gru_net = GRUNet(len(obs), args.gru_size, int(env.action_space.n))
bhx_net = HxQBNet(args.gru_size, args.bhx_size)
bgru_net = MMNet(gru_net, bhx_net)
if args.cuda:
bgru_net = bgru_net.cuda()
bx_prefix = 'scratch-'
if not args.bx_scratch:
if bgru_net.bhx_net is not None:
bgru_net.bhx_net.load_state_dict(torch.load(bhx_net_path))
bx_prefix = ''
gru_prefix = 'scratch-'
if not args.gru_scratch:
bgru_net.gru_net.load_state_dict(torch.load(gru_net_path, map_location='cpu'))
bgru_net.gru_net.noise = False
gru_prefix = ''
# create directories to save result
bgru_dir_name = '{}gru_{}_{}hx_({},{})_bgru'.format(gru_prefix, args.gru_size, bx_prefix, args.bhx_size, args.ox_size)
bgru_dir = tl.ensure_directory_exits(os.path.join(env_dir, bgru_dir_name))
bgru_net_path = os.path.join(bgru_dir, 'model.p')
min_moore_machine_path = os.path.join(bgru_dir, 'min_moore_machine.p')
unmin_moore_machine_path = os.path.join(bgru_dir, 'unmin_moore_machine.p')
bgru_plot_dir = tl.ensure_directory_exits(os.path.join(bgru_dir, 'Plots'))
_log_tag = 'train' if args.bgru_train else ('test' if args.bgru_test else 'generate_fsm')
_log_tag = _log_tag if not args.evaluate_fsm else 'evaluate_fsm'
tl.set_log(bgru_dir, _log_tag)
if args.bgru_train:
fsm_object.bgru_train(bgru_net, gru_net, args.cuda, args.gru_scratch, trajectories_data_path, bgru_net_path, bgru_plot_dir, args.batch_size, args.train_epochs, gru_prob_data_path, bgru_dir)
if args.bgru_test:
fsm_object.bgru_test(bgru_net, bgru_net_path, args.cuda)
if args.generate_fsm:
fsm_object.generate_fsm(bgru_net, bgru_net_path, args.cuda, unmin_moore_machine_path, bgru_dir, min_moore_machine_path)
if args.evaluate_fsm:
fsm_object.evaluate_fsm(bgru_net, bgru_net_path, min_moore_machine_path)
env.close()
except Exception as ex:
logging.error(''.join(traceback.format_exception(etype=type(ex), value=ex, tb=ex.__traceback__)))