-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecision_tree.py
45 lines (33 loc) · 1.36 KB
/
decision_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import pandas as pd
df = pd.read_csv('./data/play_tennis.csv')
df_num = df.select_dtypes(['int64', 'float64'])
df_objs = df.select_dtypes(object)
from sklearn.preprocessing import LabelEncoder
for col in df_objs:
le = LabelEncoder()
df_objs[col] = le.fit_transform(df_objs[col])
df_new = pd.concat([df_num, df_objs], axis=1)
X = df_new.drop(['Play Tennis'], axis=1)
y = df_new['Play Tennis']
# split dataset
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=23)
from sklearn.tree import DecisionTreeClassifier
dtc = DecisionTreeClassifier(criterion='entropy', max_depth=4)
dtc.fit(X_train, y_train)
y_pred = dtc.predict(X_test)
from sklearn.metrics import accuracy_score
print(accuracy_score(y_test, y_pred))
# part to generate image
from sklearn.tree import export_graphviz
from six import StringIO
from IPython.display import Image
import pydotplus
dot_data = StringIO()
export_graphviz(dtc, out_file=dot_data,
filled=True, rounded=True,
special_characters=True,feature_names = X.columns.tolist(),class_names=['0','1'])
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_png('test.png')
Image(graph.create_png())
print(pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}))