-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRCC-Dual-GAN.py
459 lines (430 loc) · 27.6 KB
/
RCC-Dual-GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from keras.layers import Input, Dense, Dropout
from keras.models import Sequential, Model
from keras.optimizers import SGD
import numpy as np
import pandas as pd
import keras
import math
import argparse
from keras.models import load_model
from sklearn.cluster import KMeans
from sklearn.metrics import average_precision_score, roc_auc_score, precision_score, recall_score, f1_score
def parse_args():
parser = argparse.ArgumentParser(description="Run Dual-MGAN.")
parser.add_argument('--path_out', nargs='?', default='/Data/out10.csv',
help='Identified Anomalies path.')
parser.add_argument('--path_unl', nargs='?', default='/Data/unl10.csv',
help='Unlabeled data path.')
parser.add_argument('--path_test', nargs='?', default='/Data/test.csv',
help='Test data path.')
parser.add_argument('--save_model', nargs='?', default='discriminator.h5',
help='The final model.')
parser.add_argument('--k_means', type=int, default=10,
help='The k in k-means.')
parser.add_argument('--max_iter_MGAOS', type=int, default=2000,
help='Stop training sub_generators in MGAOS after max_iter_MGAOS.')
parser.add_argument('--max_iter_MGAAL', type=int, default=1000,
help='Stop training sub_generators in MGAAL after max_iter_MGAAL.')
parser.add_argument('--lr_sg', type=float, default=0.0001,
help='Learning rate of sub_generators.')
parser.add_argument('--lr_sd', type=float, default=0.01,
help='Learning rate of sub_discriminators.')
parser.add_argument('--lr_d', type=float, default=0.001,
help='Learning rate of the detector.')
parser.add_argument('--decay', type=float, default=1e-6,
help='Decay.')
parser.add_argument('--batch_size', type=int, default=1000,
help='batch_size.')
parser.add_argument('--momentum', type=float, default=0.9,
help='Momentum.')
parser.add_argument('--nnr_MGAOS', type=float, default=0.4,
help='The thresholds of Nnr in MGAOS.')
parser.add_argument('--nnr_MGAAL', type=float, default=0.2,
help='The thresholds of Nnr in MGAAL.')
return parser.parse_args()
# Sub-Generator
def create_generator(latent_size):
gen = Sequential()
gen.add(Dense(latent_size, input_dim=latent_size, activation='relu', kernel_initializer=keras.initializers.Identity(gain=1.0)))
gen.add(Dense(latent_size, activation='relu', kernel_initializer=keras.initializers.Identity(gain=1.0)))
latent = Input(shape=(latent_size,))
fake_data = gen(latent)
return Model(latent, fake_data)
# Sub-Discriminator
def create_sub_discriminator(size):
dis = Sequential()
dis.add(Dense(size, input_dim=latent_size, activation='relu', kernel_initializer= keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)))
dis.add(Dense(10, activation='relu', kernel_initializer=keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)))
dis.add(Dense(1, activation='sigmoid',kernel_initializer=keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal',seed=None)))
data = Input(shape=(latent_size,))
fake = dis(data)
return Model(data, fake)
# Detector
def create_discriminator(size):
dis = Sequential()
dis.add(Dense(size, input_dim=latent_size, activation='relu', kernel_initializer= keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)))
dis.add(Dense(10, activation='relu', kernel_initializer=keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal',seed=None)))
dis.add(Dropout(0.2))
dis.add(Dense(1, activation='sigmoid',kernel_initializer=keras.initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal',seed=None)))
data = Input(shape=(latent_size,))
fake = dis(data)
return Model(data, fake)
# Load data
def load_data():
data_out = pd.read_table('{path}'.format(path = args.path_out), sep=' ', header=None)
data_unl = pd.read_table('{path}'.format(path = args.path_unl), sep=' ', header=None)
data_out = data_out.sample(frac=1).reset_index(drop=True)
data_unl = data_unl.sample(frac=1).reset_index(drop=True)
id_out = data_out.pop(0)
id_unl = data_unl.pop(0)
y_out = data_out.pop(1)
y_unl = data_unl.pop(1)
data_out_x = data_out.as_matrix()
data_unl_x = data_unl.as_matrix()
data_id_out = id_out.values
data_id_unl = id_unl.values
data_out_y = y_out.values
data_unl_y = y_unl.values
return data_out_x, data_unl_x, data_id_out, data_id_unl, data_out_y, data_unl_y
# Load test data
def load_test_data():
data = pd.read_table('{path}'.format(path = args.path_test), sep=' ', header=None)
data = data.sample(frac=1, replace=False).reset_index(drop=True)
id = data.pop(0)
y = data.pop(1)
data_x = data.as_matrix()
data_id = id.values
data_y = y.values
return data_x, data_id, data_y
if __name__ == '__main__':
# initilize arguments
args = parse_args()
names = locals()
auc_d = 0
# initialize dataset
data_out_x, data_unl_x, data_id_out, data_id_unl, data_out_y, data_unl_y = load_data()
test_x, test_id, test_y = load_test_data()
data_x = np.concatenate((data_out_x, data_unl_x), axis=0)
data_y = np.concatenate((data_out_y, data_unl_y), axis=0)
data_out_size = data_out_x.shape[0]
data_unl_size = data_unl_x.shape[0]
data_size = data_out_size + data_unl_size
latent_size = data_x.shape[1]
batch_size = min(args.batch_size, data_size)
mul = math.ceil(data_unl_size/data_out_size)-1
print("The dimensions of the outliers:{}*{}".format(data_out_size, latent_size))
print("The dimensions of the unlabeled data:{}*{}".format(data_unl_size, latent_size))
# The number of the outliers in test
top_n = 0
for i in range(test_y.shape[0]):
top_n = test_y[i]+top_n
# k-means
k_out = min(data_out_size, args.k_means)
k_unl = min(data_unl_size, args.k_means)
if data_out_size <= args.k_means:
kmeans_cen_out = data_out_x
else:
kmeans_out = KMeans(n_clusters=k_out, random_state=0, max_iter=1000).fit(data_out_x)
kmeans_cen_out = pd.DataFrame(kmeans_out.cluster_centers_)
kmeans_cen_out = kmeans_cen_out.as_matrix()
kmeans_unl = KMeans(n_clusters=k_unl, random_state=0, max_iter=1000).fit(data_unl_x)
kmeans_cen_unl = pd.DataFrame(kmeans_unl.cluster_centers_)
kmeans_cen_unl = kmeans_cen_unl.as_matrix()
for i in range(k_out):
names['data_out_x_' + str(i)] = []
names['data_out_num_x_' + str(i)] = 0
for idx in range(data_out_size):
dists_out = np.sqrt(np.sum((data_out_x[idx,] - kmeans_cen_out) ** 2, axis=1))
index = np.argsort(dists_out)
for i in range(k_out):
if index[0] == i:
if names['data_out_x_' + str(i)] == []:
names['data_out_x_' + str(i)] = data_out_x[idx,].reshape(1,latent_size)
else:
names['data_out_x_' + str(i)] = np.concatenate((names['data_out_x_' + str(i)], data_out_x[idx,].reshape(1,latent_size)), axis=0)
names['data_out_num_x_' + str(i)] = names['data_out_num_x_' + str(i)]+1
for i in range(k_unl):
names['data_unl_x_' + str(i)] = []
for idx in range(data_unl_size):
dists_unl = np.sqrt(np.sum((data_unl_x[idx,] - kmeans_cen_unl) ** 2, axis=1))
index = np.argsort(dists_unl)
for i in range(k_unl):
if index[0] == i:
if names['data_unl_x_' + str(i)] == []:
names['data_unl_x_' + str(i)] = data_unl_x[idx,].reshape(1,latent_size)
else:
names['data_unl_x_' + str(i)] = np.concatenate((names['data_unl_x_' + str(i)], data_unl_x[idx,].reshape(1,latent_size)), axis=0)
# Create sub-discriminator
for i in range(k_out):
names['discriminator_out_' + str(i)] = create_sub_discriminator(min(data_size,1000))
names['discriminator_out_' + str(i)].compile(optimizer=SGD(lr=args.lr_sd, decay=args.decay, momentum=args.momentum), loss='binary_crossentropy')
for i in range(k_unl):
names['discriminator_unl_' + str(i)] = create_sub_discriminator(min(data_size,1000))
names['discriminator_unl_' + str(i)].compile(optimizer=SGD(lr=args.lr_sd, decay=args.decay, momentum=args.momentum), loss='binary_crossentropy')
#Create detector
discriminator_all = create_discriminator(min(data_size,1000))
discriminator_all.compile(optimizer=SGD(lr=args.lr_d, decay=args.decay, momentum=args.momentum), loss='binary_crossentropy')
# Create sub-generator and combine_model
for i in range(k_out):
names['generator_out_' + str(i)] = create_generator(latent_size)
latent = Input(shape=(latent_size,))
names['fake_out_' + str(i)] = names['generator_out_' + str(i)](latent)
names['discriminator_out_' + str(i)].trainable = False
names['fake_out_' + str(i)] = names['discriminator_out_' + str(i)](names['fake_out_' + str(i)])
names['combine_model_out_' + str(i)] = Model(latent, names['fake_out_' + str(i)])
names['combine_model_out_' + str(i)].compile(optimizer=SGD(lr=args.lr_sg, decay=args.decay, momentum=args.momentum), loss='binary_crossentropy')
for i in range(k_unl):
names['generator_unl_' + str(i)] = create_generator(latent_size)
latent = Input(shape=(latent_size,))
names['fake_unl_' + str(i)] = names['generator_unl_' + str(i)](latent)
names['discriminator_unl_' + str(i)].trainable = False
names['fake_unl_' + str(i)] = names['discriminator_unl_' + str(i)](names['fake_unl_' + str(i)])
names['combine_model_unl_' + str(i)] = Model(latent, names['fake_unl_' + str(i)])
names['combine_model_unl_' + str(i)].compile(optimizer=SGD(lr=args.lr_sg, decay=args.decay, momentum=args.momentum), loss='binary_crossentropy')
# pre-training the MGAOS
for i in range(k_out):
names['stop_out_' + str(i)] = 0
names['dis_out_' + str(i)] = 0
names['generated_data_out_all_' + str(i)] = []
names['nash_out_' + str(i)] = 0
if names['data_out_x_' + str(i)].shape[0] == 1:
dists_out = np.sqrt(np.sum((names['data_out_x_' + str(i)] - data_x) ** 2, axis=1))
index = np.argsort(dists_out)
names['dis_out_' + str(i)] = dists_out[index[4]]
elif names['data_out_x_' + str(i)].shape[0] <= 10:
for idx in range(names['data_out_x_' + str(i)].shape[0]):
dists_out = np.sum(np.sqrt(np.sum((names['data_out_x_' + str(i)][idx,] - names['data_out_x_' + str(i)]) ** 2, axis=1)), axis=0)
names['dis_out_' + str(i)] = names['dis_out_' + str(i)] + dists_out
names['dis_out_' + str(i)] = names['dis_out_' + str(i)]/(names['data_out_x_' + str(i)].shape[0]*(names['data_out_x_' + str(i)].shape[0]-1))
stop_out = 0
for epoch in range(args.max_iter_MGAOS):
print('Epoch_out {} of {}'.format(epoch + 1, args.max_iter_MGAOS))
for i in range(k_out):
if names['stop_out_' + str(i)] == 0:
names['data_out_x_' + str(i)] = pd.DataFrame(names['data_out_x_' + str(i)])
noise = np.random.uniform(0, 1, (int(names['data_out_x_' + str(i)].shape[0]), latent_size))
names['generated_data_out_' + str(i)] = names['generator_out_' + str(i)].predict(noise, verbose=0)
names['x_out_' + str(i)] = np.concatenate((names['data_out_x_' + str(i)], names['generated_data_out_' + str(i)]), axis=0)
names['y_out_' + str(i)] = np.array([1] * (int(names['data_out_x_' + str(i)].shape[0])) + [0] * (int(names['data_out_x_' + str(i)].shape[0])))
names['discriminator_out' + str(i)] = names['discriminator_out_' + str(i)].train_on_batch(names['x_out_' + str(i)], names['y_out_' + str(i)])
trick_out = np.array([1] * (names['data_out_x_' + str(i)].shape[0]))
names['generator_out' + str(i)] = names['combine_model_out_' + str(i)].train_on_batch(noise, trick_out)
# The evaluation of sub-GANs
if names['data_out_x_' + str(i)].shape[0] == 1:
dis = np.linalg.norm(names['generated_data_out_' + str(i)] - names['data_out_x_' + str(i)])
if dis <= names['dis_out_' + str(i)]:
if names['generated_data_out_all_' + str(i)] == []:
names['generated_data_out_all_' + str(i)] = names['generated_data_out_' + str(i)].reshape(1,latent_size)
else:
names['generated_data_out_all_' + str(i)] =np.concatenate((names['generated_data_out_all_' + str(i)], names['generated_data_out_' + str(i)].reshape(1,latent_size)), axis=0)
if names['generated_data_out_all_' + str(i)].shape[0] >= mul:
names['stop_out_' + str(i)] = 1
stop_out = stop_out + names['stop_out_' + str(i)]
break
noise = np.random.uniform(0, 1, (mul, latent_size))
names['generated_data_out_' + str(i)] = names['generator_out_' + str(i)].predict(noise, verbose=0)
for idx in range(mul):
dis = np.linalg.norm(names['generated_data_out_' + str(i)][idx,] - names['data_out_x_' + str(i)])
if dis <= names['dis_out_' + str(i)]:
names['generated_data_out_all_' + str(i)] = np.concatenate((names['generated_data_out_all_' + str(i)], names['generated_data_out_' + str(i)][idx,].reshape(1,latent_size)), axis=0)
if names['generated_data_out_all_' + str(i)].shape[0] >= mul:
names['stop_out_' + str(i)] = 1
stop_out = stop_out + names['stop_out_' + str(i)]
break
elif names['data_out_x_' + str(i)].shape[0] <= 10:
go_on_gen = 0
for idx in range(names['data_out_x_' + str(i)].shape[0]):
dis = (np.sum(np.sqrt(np.sum((names['generated_data_out_' + str(i)][idx,] - names['data_out_x_' + str(i)]) ** 2, axis=1)),axis=0))/names['data_out_x_' + str(i)].shape[0]
if dis <= names['dis_out_' + str(i)]:
go_on_gen = 1
if names['generated_data_out_all_' + str(i)] == []:
names['generated_data_out_all_' + str(i)] = names['generated_data_out_' + str(i)][idx,].reshape(1,latent_size)
else:
names['generated_data_out_all_' + str(i)] =np.concatenate((names['generated_data_out_all_' + str(i)],names['generated_data_out_' + str(i)][idx,].reshape(1,latent_size)), axis=0)
if names['generated_data_out_all_' + str(i)].shape[0] >= names['data_out_x_' + str(i)].shape[0]*mul:
names['stop_out_' + str(i)] = 1
stop_out = stop_out + names['stop_out_' + str(i)]
break
if go_on_gen == 1:
noise = np.random.uniform(0, 1, (mul * names['data_out_x_' + str(i)].shape[0], latent_size))
names['generated_data_out_' + str(i)] = names['generator_out_' + str(i)].predict(noise, verbose=0)
for idx in range(names['data_out_x_' + str(i)].shape[0]*mul):
dis = (np.sum(np.sqrt(np.sum((names['generated_data_out_' + str(i)][idx,] - names['data_out_x_' + str(i)]) ** 2, axis=1)),axis=0))/names['data_out_x_' + str(i)].shape[0]
if dis <= names['dis_out_' + str(i)]:
names['generated_data_out_all_' + str(i)] = np.concatenate((names['generated_data_out_all_' + str(i)], names['generated_data_out_' + str(i)][idx,].reshape(1,latent_size)), axis=0)
if names['generated_data_out_all_' + str(i)].shape[0] >= names['data_out_x_' + str(i)].shape[0]*mul:
names['stop_out_' + str(i)] = 1
stop_out = stop_out + names['stop_out_' + str(i)]
break
else:
names['generated_data_out_' + str(i)] = pd.DataFrame(names['generated_data_out_' + str(i)])
sample_num = min(20, names['data_out_x_' + str(i)].shape[0])
names['eva_nash_data_out_' + str(i)] = names['data_out_x_' + str(i)].sample(sample_num, replace=False, random_state=None, axis=0)
names['eva_nash_data_out_' + str(i)] = names['eva_nash_data_out_' + str(i)].as_matrix()
names['Nnr_MGAOS_' + str(i)] = 0
for idx in range(sample_num):
real = 0
dis = np.sqrt(np.sum((names['eva_nash_data_out_' + str(i)][idx,] - names['x_out_' + str(i)]) ** 2, axis=1))
dis = pd.DataFrame(dis)
names['y_out_' + str(i)] = pd.DataFrame(names['y_out_' + str(i)])
dis = np.concatenate((dis, names['y_out_' + str(i)]), axis=1)
dis = pd.DataFrame(dis, columns=['d', 'y'])
dis = dis.sort_values('d', ascending=True)
dis = dis.as_matrix()
for index in range(sample_num):
if dis[index, 1] == 0:
real = real + 1
nnr = real / sample_num
if nnr > args.nnr_MGAOS:
names['Nnr_MGAOS_' + str(i)] = names['Nnr_MGAOS_' + str(i)] + 1
names['Nnr_MGAOS_' + str(i)] = names['Nnr_MGAOS_' + str(i)] / sample_num
if names['Nnr_MGAOS_' + str(i)] > args.nnr_MGAOS:
names['stop_out_' + str(i)] = 1
stop_out = stop_out + 1
if stop_out == k_out:
break
# Augment the minority class
new_data_out_size = 0
for i in range(k_out):
if names['data_out_x_' + str(i)].shape[0]<=10:
if names['generated_data_out_all_' + str(i)] ==[]:
names['new_data_out_x_' + str(i)] = names['data_out_x_' + str(i)]
else:
names['new_data_out_x_' + str(i)] = np.concatenate((names['generated_data_out_all_' + str(i)], names['data_out_x_' + str(i)]), axis=0)
if names['new_data_out_x_' + str(i)].shape[0] < names['data_out_x_' + str(i)].shape[0]*(mul+1):
names['new_data_out_x_' + str(i)] = pd.DataFrame(names['new_data_out_x_' + str(i)])
names['new_data_out_x_' + str(i)] = names['new_data_out_x_' + str(i)].sample(n=math.ceil(names['data_out_x_' + str(i)].shape[0] * (mul+1)), replace=True, random_state=None, axis=0)
else:
if names['stop_out_' + str(i)] == 1:
noise = np.random.uniform(0, 1, (int(names['data_out_x_' + str(i)].shape[0]*mul), latent_size))
names['generated_data_out_all_' + str(i)] = names['generator_out_' + str(i)].predict(noise, verbose=0)
names['new_data_out_x_' + str(i)] = np.concatenate((names['generated_data_out_all_' + str(i)], names['data_out_x_' + str(i)]), axis=0)
else:
names['data_out_x_' + str(i)] = pd.DataFrame(names['data_out_x_' + str(i)])
names['new_data_out_x_' + str(i)] = names['data_out_x_' + str(i)].sample(n=math.ceil(names['data_out_x_' + str(i)].shape[0] * (mul + 1)), replace=True, random_state=None,axis=0)
new_data_out_size = new_data_out_size + names['new_data_out_x_' + str(i)].shape[0]
# Start iteration
for i in range(k_unl):
names['stop_unl_' + str(i)] = 0
if names['data_unl_x_' + str(i)].shape[0] == 1:
names['change_' + str(i)] = 0
dists_unl = np.sqrt(np.sum((names['data_unl_x_' + str(i)] - data_x) ** 2, axis=1))
index = np.argsort(dists_unl)
names['dis_unl_' + str(i)] = dists_unl[index[4]]
for epoch in range(args.max_iter_MGAAL):
print('Epoch {} of {}'.format(epoch + 1, args.max_iter_MGAAL))
# Sample mini-batch date
for i in range(k_out):
names['new_data_out_x_' + str(i)] = pd.DataFrame(names['new_data_out_x_' + str(i)])
names['data_out_batch_x_' + str(i)] = names['new_data_out_x_' + str(i)].sample(n=math.ceil(names['new_data_out_x_' + str(i)].shape[0] * (batch_size/2) / new_data_out_size), replace=False, random_state=None, axis=0)
for i in range(k_unl):
names['data_unl_x_' + str(i)] = pd.DataFrame(names['data_unl_x_' + str(i)])
names['data_unl_batch_x_' + str(i)] = names['data_unl_x_' + str(i)].sample(n=math.ceil((names['data_unl_x_' + str(i)].shape[0] * (batch_size/2)) / data_unl_size), replace=False, random_state=None, axis=0)
# Train sub-generators and sub-discriminators
for i in range(k_unl):
names['data_unl_batch_x_' + str(i)] = pd.DataFrame(names['data_unl_batch_x_' + str(i)])
if names['stop_unl_' + str(i)] == 0:
noise = np.random.uniform(0, 1, (int(names['data_unl_batch_x_' + str(i)].shape[0]), latent_size))
names['generated_data_unl_' + str(i)] = names['generator_unl_' + str(i)].predict(noise, verbose=0)
names['x_unl_' + str(i)] = np.concatenate((names['data_unl_batch_x_' + str(i)], names['generated_data_unl_' + str(i)]), axis=0)
names['y_unl_' + str(i)] = np.array([1] * (int(names['data_unl_batch_x_' + str(i)].shape[0])) + [0] * (int(names['data_unl_batch_x_' + str(i)].shape[0])))
names['discriminator_unl' + str(i)] = names['discriminator_unl_' + str(i)].train_on_batch(names['x_unl_' + str(i)], names['y_unl_' + str(i)])
trick_unl = np.array([1] * (int(names['data_unl_batch_x_' + str(i)].shape[0])))
names['generator_unl' + str(i)] = names['combine_model_unl_' + str(i)].train_on_batch(noise, trick_unl)
# The evaluation of sub-GANs
names['generated_data_unl_' + str(i)] = pd.DataFrame(names['generated_data_unl_' + str(i)])
sample_num = min(20,names['data_unl_batch_x_' + str(i)].shape[0])
names['eva_nash_data_unl_' + str(i)] = names['data_unl_batch_x_' + str(i)].sample(sample_num, replace=False, random_state=None, axis=0)
names['eva_nash_data_unl_' + str(i)] = names['eva_nash_data_unl_' + str(i)].as_matrix()
names['Nnr_unl_' + str(i)] = 0
if sample_num >= 2:
for idx in range(sample_num):
real = 0
dis = np.sqrt(np.sum((names['eva_nash_data_unl_' + str(i)][idx,] - names['x_unl_' + str(i)]) ** 2,axis=1))
dis = pd.DataFrame(dis)
names['y_unl_' + str(i)] = pd.DataFrame(names['y_unl_' + str(i)])
dis = np.concatenate((dis, names['y_unl_' + str(i)]), axis=1)
dis = pd.DataFrame(dis, columns=['d', 'y'])
dis = dis.sort_values('d', ascending=True)
dis = dis.as_matrix()
for index in range(sample_num):
if dis[index, 1] == 0:
real = real + 1
nnr = real / sample_num
if nnr > args.nnr_MGAAL:
names['Nnr_unl_' + str(i)] = names['Nnr_unl_' + str(i)] + 1
names['Nnr_unl_' + str(i)] = names['Nnr_unl_' + str(i)] / sample_num
if names['Nnr_unl_' + str(i)] > args.nnr_MGAAL:
names['stop_unl_' + str(i)] = 1
print("The {}th subset contains {} samples, the evaluation of the sub-GAN is {}".format(i, sample_num, names['Nnr_unl_' + str(i)]))
else:
dis = np.linalg.norm(names['eva_nash_data_unl_' + str(i)] - names['generated_data_unl_' + str(i)])
if dis <= names['dis_unl_' + str(i)]:
names['change_' + str(i)] = names['change_' + str(i)]+1
if names['change_' + str(i)] > 5:
names['stop_unl_' + str(i)] = 1
print("The {}th subset contains {} samples, the evaluation of the sub-GAN is {}".format(i, sample_num, names['change_' + str(i)]))
# Train the detector
for i in range(k_out):
if i==0:
data_out_batch = names['data_out_batch_x_' + str(i)]
else:
data_out_batch = np.concatenate((data_out_batch, names['data_out_batch_x_' + str(i)]), axis=0)
for i in range(k_unl):
if i==0:
data_unl_batch = names['data_unl_batch_x_' + str(i)]
else:
data_unl_batch = np.concatenate((data_unl_batch, names['data_unl_batch_x_' + str(i)]), axis=0)
for i in range(k_unl):
noise_all = np.random.uniform(0, 1, (math.ceil(batch_size / (2*k_unl)), latent_size))
names['generated_data_unl_all_' + str(i)] = names['generator_unl_' + str(i)].predict(noise_all, verbose=0)
if i==0:
x_unl_all = np.concatenate((data_unl_batch, names['generated_data_unl_all_' + str(i)]), axis=0)
else:
x_unl_all = np.concatenate((x_unl_all, names['generated_data_unl_all_' + str(i)]), axis=0)
x_all = np.concatenate((x_unl_all, data_out_batch), axis=0)
y_all = np.array([1] * (int(data_unl_batch.shape[0])) + [0] * (x_all.shape[0] - data_unl_batch.shape[0]))
discriminator_all.train_on_batch(x_all, y_all)
# The selection of optimal model(auc)
p_value = discriminator_all.predict(data_x)
p_value = 1 - p_value
p_value = pd.DataFrame(p_value)
data_y_ide = np.array([1] * (int(data_out_x.shape[0])) + [0] * (data_unl_x.shape[0]))
data_y_ide = pd.DataFrame(data_y_ide)
auc = roc_auc_score(data_y_ide, p_value)
print('The performance evaluation(auc) of the detector{}'.format(auc))
if auc_d <= auc:
auc_d = auc
discriminator_all.save('{path}'.format(path=args.save_model))
discriminator_test = load_model('{path}'.format(path=args.save_model))
p_value = 1 - discriminator_test.predict(test_x)
p_value = [i for j in p_value for i in j]
p_valuen = p_value[:]
p_value2n = p_value[:]
p_value_list = np.argsort(p_value)
p_value_n = p_value[p_value_list[-top_n]]
p_value_2n = p_value[p_value_list[-2 * top_n]]
for idx1 in range(len(p_value)):
if p_valuen[idx1] >= p_value_n:
p_valuen[idx1] = 1
else:
p_valuen[idx1] = 0
for idx2 in range(len(p_value)):
if p_value2n[idx2] >= p_value_2n:
p_value2n[idx2] = 1
else:
p_value2n[idx2] = 0
p_value = pd.DataFrame(p_value)
p_valuen = pd.DataFrame(p_valuen)
test_y = pd.DataFrame(test_y)
auc = roc_auc_score(test_y, p_value)
ap = average_precision_score(test_y, p_value)
p_valuen = pd.DataFrame(p_valuen)
precision_n = precision_score(test_y, p_valuen)
recall_n = recall_score(test_y, p_valuen)
f1score_n = f1_score(test_y, p_valuen)
print('AUC_final:{}'.format(auc))
print('AP_final:{}'.format(ap))
print('precision@n_final:{}'.format(precision_n))
print('recall@n_final:{}'.format(recall_n))
print('f1@n_final:{}'.format(f1score_n))