Skip to content

Latest commit

 

History

History
28 lines (23 loc) · 886 Bytes

README.JASMIN.md

File metadata and controls

28 lines (23 loc) · 886 Bytes

Training convml_tt TripletTrainerModel on JASMIN

Below is an example submission script for training on the JASMIN data analysis facility. This assumes that convml_tt and its requirements have already been installed into a conda environment called convml_tt.

#!/bin/bash
#SBATCH --partition=lotus_gpu
#SBATCH --account=lotus_gpu
#SBATCH -o convml_tt.%a.%j.out
#SBATCH -e convml_tt.%a.%j.err
#SBATCH --time=01:00:00
#SBATCH --gres=gpu:1
#SBATCH -n 32

# make sure we have 32 cores so that we get access to all the memory on the node

DATASET="Nx256_s200000.0_N500study_N2000train"

# make sure conda is available
source /home/users/lcdenby/.bashrc
# load conda env
conda activate convml_tt
# and train
python -m convml_tt.trainer $DATASET --gpus 1 --max-epochs 100 --log-to-wandb --preload-data --num-dataloader-workers 32 --batch-size 64